https://github.com/paccmann/paccmann_datasets
pytoda - PaccMann PyTorch Dataset Classes. Read the docs: https://paccmann.github.io/paccmann_datasets/
https://github.com/paccmann/paccmann_datasets
bioinformatics chemoinformatics deep-learning python pytorch rdkit smiles
Last synced: about 2 months ago
JSON representation
pytoda - PaccMann PyTorch Dataset Classes. Read the docs: https://paccmann.github.io/paccmann_datasets/
- Host: GitHub
- URL: https://github.com/paccmann/paccmann_datasets
- Owner: PaccMann
- License: mit
- Created: 2019-11-01T10:18:05.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2024-10-06T10:21:03.000Z (8 months ago)
- Last Synced: 2025-04-09T21:16:33.952Z (about 2 months ago)
- Topics: bioinformatics, chemoinformatics, deep-learning, python, pytorch, rdkit, smiles
- Language: Python
- Homepage:
- Size: 6.01 MB
- Stars: 28
- Watchers: 4
- Forks: 7
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# PyToDa
[](https://badge.fury.io/py/pytoda)
[](https://github.com/PaccMann/paccmann_datasets/actions)
[](https://opensource.org/licenses/MIT)
[](https://github.com/psf/black)
[](https://pepy.tech/project/pytoda)
[](https://pepy.tech/project/pytoda)
[](https://github.com/marketplace/actions/super-linter)## Overview
pytoda - PaccMann P*yTo*rch *Da*taset Classes
A python package that eases handling biochemical data for deep learning applications
with pytorch.## Installation
`pytoda` ships via [PyPI](https://pypi.org/project/pytoda):
```sh
pip install pytoda
```## Documentation
Please find the full documentation [here](https://paccmann.github.io/paccmann_datasets/).
## Development
For development setup, we recommend to work in a dedicated conda environment:
```sh
conda env create -f conda.yml
```Activate the environment:
```sh
conda activate pytoda
```Install in editable mode:
```sh
pip install -r dev_requirements.txt
pip install --user --no-use-pep517 -e .
```## Examples
For some examples on how to use `pytoda` see [here](./examples)
## References
If you use `pytoda` in your projects, please cite the following:
```bib
@article{born2021data,
title={Data-driven molecular design for discovery and synthesis of novel ligands: a case study on SARS-CoV-2},
author={Born, Jannis and Manica, Matteo and Cadow, Joris and Markert, Greta and Mill, Nil Adell and Filipavicius, Modestas and Janakarajan, Nikita and Cardinale, Antonio and Laino, Teodoro and Martinez, Maria Rodriguez},
journal={Machine Learning: Science and Technology},
volume={2},
number={2},
pages={025024},
year={2021},
publisher={IOP Publishing}
}
```