An open API service indexing awesome lists of open source software.

https://github.com/pacificcommunity/ofp-sam-yft-2023-grid

YFT 2023 Grid
https://github.com/pacificcommunity/ofp-sam-yft-2023-grid

2023 assessment ofp sam yft

Last synced: about 2 months ago
JSON representation

YFT 2023 Grid

Awesome Lists containing this project

README

        

# YFT 2023 Grid Results

Download YFT 2023 assessment report:

- **Stock assessment of yellowfin tuna in the western and central Pacific Ocean: 2023**\
**[WCPFC-SC19-2023/SA-WP-04](https://meetings.wcpfc.int/node/19352)**

Download YFT 2023 diagnostic model:

- Clone the **[yft-2023-diagnostic](https://github.com/PacificCommunity/ofp-sam-yft-2023-diagnostic)** repository or download as **[main.zip](https://github.com/PacificCommunity/ofp-sam-yft-2023-diagnostic/archive/refs/heads/main.zip)** file

Download YFT 2023 grid results:

- The **[yft-2023-grid](https://github.com/PacificCommunity/ofp-sam-yft-2023-grid)** repository includes a **[yft-2023-grid-results.zip](https://github.com/PacificCommunity/ofp-sam-yft-2023-grid/releases/download/file/yft-2023-grid-results.zip)** file

## Grid of ensemble models

The YFT 2023 assessment used a structural uncertainty grid with 54 models:

Axis | Levels | Option
------------------- | ------ | -----------------------------------
Tag mixing | 2 | 1, 2* quarters
Size data weighting | 3 | Sample sizes divided by 10, 20*, 40
Age data weighting | 3 | 0.5, 0.75*, 1
Steepness | 3 | 0.65, 0.80*, 0.95

## Grid results

The [yft-2023-grid-results.zip](https://github.com/PacificCommunity/ofp-sam-yft-2023-grid/releases/download/file/yft-2023-grid-results.zip) file contains all files necessary to run or browse the YFT 2023 grid models.

The grid models are run from a par file, as described in the corresponding `doitall.sh` script. This starting par file is the best of 20 jittered par files from the pre-grid analysis.

The final par and rep files are consistently named `final.par` and `plot-final.par.rep` to facilitate harvesting results from across the 54 grid member models.

Preview of zip file contents:

```
yft-2023-grid-results.zip
├── bin
│   └── mfclo64
└── grid
├── m1_s10_a050_h65
│   ├── 13.par
│   ├── 14.par
│   ├── dohessian_standalone.sh
│   ├── doitall.sh
│   ├── final.par
│   ├── mfcl.cfg
│   ├── neigenvalues
│   ├── plot-final.par.rep
│   ├── test_plot_output
│   ├── xinit.rpt
│   ├── yft.age_length
│   ├── yft.frq
│   ├── yft_hess_inv_diag
│   ├── yft_pos_hess_cor
│   ├── yft.tag
│   └── yft.var
├── m1_s10_a050_h80
│   ├── ...
```

## Incorporating structural and estimation uncertainty

The [estimation_uncertainty.R](notes/estimation_uncertainty.R) script uses Monte Carlo simulations to add estimation uncertainty to the structural uncertainty grid estimates of reference points. The resulting means and quantiles are found in [estimation_uncertainty.csv](notes/estimation_uncertainty.csv).

See also Section 6.2.3 and Table 5 in the YFT 2023 stock assessment [report](https://meetings.wcpfc.int/node/19352).

The script requires the FLR and FLR4MFCL packages:
```
install_github("flr/FLCore")
install_github("PacificCommunity/FLR4MFCL")
```