Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/paganpasta/onmixup
NeurIPS Reproducbility Challenge 2019
https://github.com/paganpasta/onmixup
Last synced: 3 months ago
JSON representation
NeurIPS Reproducbility Challenge 2019
- Host: GitHub
- URL: https://github.com/paganpasta/onmixup
- Owner: paganpasta
- Created: 2019-12-27T22:03:42.000Z (almost 5 years ago)
- Default Branch: master
- Last Pushed: 2020-02-25T16:19:04.000Z (over 4 years ago)
- Last Synced: 2024-05-12T22:53:07.537Z (6 months ago)
- Language: Jupyter Notebook
- Size: 3.68 MB
- Stars: 9
- Watchers: 2
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- Awesome-Mixup - [Code
README
``` NeurIPS 2019 Reproducibility Project ```
Paper reproduced: [pdf](https://arxiv.org/pdf/1905.11001.pdf)
#### Getting Started
#### Pre-requisite
Install [NVIDIA Docker](https://github.com/NVIDIA/nvidia-docker)
#### Building & Running the docker image
1. `nvidia-docker build --rm --tag on_mixup:latest .`
2. `nvidia-docker run -p 8000:8000 -v $PATH/TO/PROJECT_DIR:/home/on_mixup --rm --name on_mixup -it on_mixup:latest`#### Generating The Density Plots
Firstly, start the jupyter notebook
`jupyter notebook --ip=0.0.0.0 --port=8000 --allow-root --NotebookApp.token='' --NotebookApp.password=''`
There are two notebooks corrsponding to scenarios of Mixup and **no** Mixup. Details on how to run them are provided in the notebooks itself.
#### Training
There are files named:
1. cifar.py
2. fmnist.py
3. stl_10.pyTo the train the neural network on the particular dataset execute the corresponding script, for example,
`python cifar.py`### Evaluation
`evaluation.py` takes as an argument a config.yaml file. Sample configs are in the `eval_config` folder. To run an evaluation on the dataset, execute the following command
`python evaluation.py --config eval_config/cifar.yaml`
The fields of the config are self explanatory.