Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/paganpasta/onmixup

NeurIPS Reproducbility Challenge 2019
https://github.com/paganpasta/onmixup

Last synced: 3 months ago
JSON representation

NeurIPS Reproducbility Challenge 2019

Awesome Lists containing this project

README

        

``` NeurIPS 2019 Reproducibility Project ```

Paper reproduced: [pdf](https://arxiv.org/pdf/1905.11001.pdf)

#### Getting Started

#### Pre-requisite

Install [NVIDIA Docker](https://github.com/NVIDIA/nvidia-docker)

#### Building & Running the docker image

1. `nvidia-docker build --rm --tag on_mixup:latest .`
2. `nvidia-docker run -p 8000:8000 -v $PATH/TO/PROJECT_DIR:/home/on_mixup --rm --name on_mixup -it on_mixup:latest`

#### Generating The Density Plots

Firstly, start the jupyter notebook

`jupyter notebook --ip=0.0.0.0 --port=8000 --allow-root --NotebookApp.token='' --NotebookApp.password=''`

There are two notebooks corrsponding to scenarios of Mixup and **no** Mixup. Details on how to run them are provided in the notebooks itself.

#### Training

There are files named:

1. cifar.py
2. fmnist.py
3. stl_10.py

To the train the neural network on the particular dataset execute the corresponding script, for example,
`python cifar.py`

### Evaluation

`evaluation.py` takes as an argument a config.yaml file. Sample configs are in the `eval_config` folder. To run an evaluation on the dataset, execute the following command
`python evaluation.py --config eval_config/cifar.yaml`
The fields of the config are self explanatory.