https://github.com/paleolimbot/ggspatial
Enhancing spatial visualization in ggplot2
https://github.com/paleolimbot/ggspatial
Last synced: 6 months ago
JSON representation
Enhancing spatial visualization in ggplot2
- Host: GitHub
- URL: https://github.com/paleolimbot/ggspatial
- Owner: paleolimbot
- Created: 2016-07-11T21:06:12.000Z (over 9 years ago)
- Default Branch: master
- Last Pushed: 2023-08-18T00:33:14.000Z (over 2 years ago)
- Last Synced: 2025-04-12T10:57:50.583Z (7 months ago)
- Language: R
- Homepage: https://paleolimbot.github.io/ggspatial
- Size: 91.9 MB
- Stars: 377
- Watchers: 12
- Forks: 37
- Open Issues: 36
-
Metadata Files:
- Readme: README.Rmd
Awesome Lists containing this project
- Awesome-Geospatial - ggspatial - A ggplot2 R extension for plotting Spatial* objects. (R)
- awesome-gis - ggspatial - A ggplot2 R extension for plotting Spatial- objects. (Geospatial Library / R)
README
---
output: github_document
---
```{r, include = FALSE}
rosm::set_default_cachedir(system.file("rosm.cache", package = "ggspatial"))
knitr::opts_chunk$set(
collapse = TRUE,
dpi = 150,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# ggspatial
[](https://cran.r-project.org/package=ggspatial)
[](https://app.codecov.io/github/paleolimbot/ggspatial?branch=master)
[](https://lifecycle.r-lib.org/articles/stages.html#stable)
[](https://github.com/paleolimbot/ggspatial/actions)
Spatial data plus the power of the `ggplot2` framework means easier mapping.
## Installation
The package is available on CRAN, and can be installed using `install.packages("ggspatial")`. The development version can be installed via **remotes**.
```{r, eval=FALSE}
install.packages("ggspatial")
```
Or for the development version:
```{r, eval=FALSE}
install.packages("remotes") # if remotes isn't installed
remotes::install_github("paleolimbot/ggspatial")
```
## Introduction
This package is a framework for interacting with spatial data using **ggplot2** as a plotting backend. The package supports **sf** package objects, **sp** package objects, and **raster** package objects, and uses `geom_sf()` and `coord_sf()` to do most of the heavy lifting with respect to coordinate transformation.
```{r fig-layer-spatial-sf, warning=FALSE, message=FALSE}
library(ggplot2)
library(ggspatial)
load_longlake_data()
ggplot() +
# loads background map tiles from a tile source
annotation_map_tile(zoomin = -1) +
# annotation_spatial() layers don't train the scales, so data stays central
annotation_spatial(longlake_roadsdf, size = 2, col = "black") +
annotation_spatial(longlake_roadsdf, size = 1.6, col = "white") +
# raster layers train scales and get projected automatically
layer_spatial(longlake_depth_raster, aes(colour = after_stat(band1))) +
# make no data values transparent
scale_fill_viridis_c(na.value = NA) +
# layer_spatial trains the scales
layer_spatial(longlake_depthdf, aes(fill = DEPTH_M)) +
# spatial-aware automagic scale bar
annotation_scale(location = "tl") +
# spatial-aware automagic north arrow
annotation_north_arrow(location = "br", which_north = "true")
```