Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/pankajkarman/bias_correction
python library for bias correction
https://github.com/pankajkarman/bias_correction
Last synced: 3 months ago
JSON representation
python library for bias correction
- Host: GitHub
- URL: https://github.com/pankajkarman/bias_correction
- Owner: pankajkarman
- License: mit
- Created: 2020-06-02T19:39:19.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2022-12-19T13:34:48.000Z (about 2 years ago)
- Last Synced: 2024-06-11T20:33:28.090Z (8 months ago)
- Language: Jupyter Notebook
- Size: 200 KB
- Stars: 29
- Watchers: 2
- Forks: 8
- Open Issues: 10
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-meteo - Bias Correction
README
_________________
[![PyPI](https://img.shields.io/pypi/v/bias_correction.svg)](http://badge.fury.io/py/bias-correction)
[![conda](https://img.shields.io/conda/vn/conda-forge/bias_correction.svg)](https://anaconda.org/conda-forge/bias_correction)
[![Downloads](https://pepy.tech/badge/bias-correction)](https://pepy.tech/project/bias-correction)
[![License](https://img.shields.io/github/license/mashape/apistatus.svg)](https://pypi.python.org/pypi/bias-correction/)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
_________________### About
The module `bias_correction` consists of functions to perform bias correction of datasets to remove biases across datasets. Implemented methods include [quantile mapping](https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/joc.2168), [modified quantile mapping](https://www.sciencedirect.com/science/article/abs/pii/S0034425716302000?via%3Dihub), [scaled distribution mapping (Gamma and Normal Corrections)](https://www.hydrol-earth-syst-sci.net/21/2649/2017/).
### Installation
Install using pip:
```bash
pip install bias-correction
```Install using conda:
```bash
conda install -c conda-forge bias_correction
```## Documentation
Latest documentation is available [here](https://pankajkarman.github.io/bias_correction/index.html).
### Usage
`bias_correction` is easy to use. Just import:
```python
from bias_correction import BiasCorrection, XBiasCorrection
```
Instantiate the bias correction class as:
```python
bc = BiasCorrection(reference, model, data_to_be_corrected)
xbc = XBiasCorrection(reference, model, data_to_be_corrected)
```Perform correction specifying the method to be used:
```python
corrected = bc.correct(method='gamma_mapping')
xcorrected = xbc.correct(method='gamma_mapping')
```