https://github.com/paradite/send-prompt
A unified TypeScript library for AI model interactions with standardized interfaces and function calling.
https://github.com/paradite/send-prompt
llm model prompt
Last synced: 6 months ago
JSON representation
A unified TypeScript library for AI model interactions with standardized interfaces and function calling.
- Host: GitHub
- URL: https://github.com/paradite/send-prompt
- Owner: paradite
- Created: 2025-05-10T06:27:58.000Z (8 months ago)
- Default Branch: main
- Last Pushed: 2025-05-28T07:37:25.000Z (7 months ago)
- Last Synced: 2025-05-28T07:53:23.942Z (7 months ago)
- Topics: llm, model, prompt
- Language: TypeScript
- Homepage: https://eval.16x.engineer/
- Size: 168 KB
- Stars: 2
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# send-prompt
[](https://www.npmjs.com/package/send-prompt)
A TypeScript library for interacting with models across providers with standardized interfaces and tool calling.
Related projects:
- [llm-info](https://github.com/paradite/llm-info): Information on LLM models, context window token limit, output token limit, pricing and more.
- [ai-file-edit](https://github.com/paradite/ai-file-edit): A library for editing files using AI models.
- [model-quirks](https://github.com/paradite/model-quirks): Quirks, edge cases, and interesting bits of various models.
- [16x Eval](https://eval.16x.engineer): Your personal workspace for prompt engineering and model evaluation.
## Features
- 🔄 Unified interface with comprehensive model support:
- First-party providers (OpenAI, Anthropic, Google, DeepSeek)
- Third-party providers (Vertex AI, Azure OpenAI, OpenRouter, Fireworks)
- Custom providers with OpenAI-compatible API
- 🔧 Supports function calling and system prompt
- 📝 Standardized message format and response structure
- 🛠️ Full TypeScript support for type safety
- 🎯 No additional dependencies for each provider
- 🛡️ Handles all edge cases (message format, function calling, multi-round conversations)
- 🎨 Provider specific options (headers, reasoning extraction)
- 🖼️ Support for image input in messages (base64 and URL formats)
- ⚡ Streaming support for real-time responses across all providers
## Quick Demo
```typescript
import { sendPrompt } from "send-prompt";
import { AI_PROVIDERS, ModelEnum } from "llm-info";
const response = await sendPrompt(
{
messages: [
{ role: "user", content: "What's the weather like in Singapore?" },
],
tools: [weatherTool],
},
{
model: ModelEnum["gpt-4.1"],
// model: ModelEnum["claude-3-7-sonnet-20250219"],
// model: ModelEnum["gemini-2.5-pro-exp-03-25"],
provider: AI_PROVIDERS.OPENAI,
// provider: AI_PROVIDERS.ANTHROPIC,
// provider: AI_PROVIDERS.GOOGLE,
apiKey: process.env.API_KEY,
}
);
console.log(response.message.content);
```
## Installation
```bash
# Install llm-info to get the model and provider information
npm install llm-info
# Install send-prompt to send prompt to models
npm install send-prompt
```
## Usage
### Basic Usage
The same function `sendPrompt` works across all providers:
```typescript
import { sendPrompt } from "send-prompt";
import { AI_PROVIDERS, ModelEnum } from "llm-info";
// OpenAI
const openaiResponse = await sendPrompt(
{
messages: [{ role: "user", content: "Hello, who are you?" }],
systemPrompt: "You are a helpful assistant.",
},
{
model: ModelEnum["gpt-4.1"],
provider: AI_PROVIDERS.OPENAI,
apiKey: "your-openai-api-key",
}
);
// Anthropic
const anthropicResponse = await sendPrompt(
{
messages: [{ role: "user", content: "Hello, who are you?" }],
systemPrompt: "You are a helpful assistant.",
},
{
model: ModelEnum["claude-3-7-sonnet-20250219"],
provider: AI_PROVIDERS.ANTHROPIC,
apiKey: "your-anthropic-api-key",
}
);
// Google
const googleResponse = await sendPrompt(
{
messages: [{ role: "user", content: "Hello, who are you?" }],
systemPrompt: "You are a helpful assistant.",
},
{
model: ModelEnum["gemini-2.5-pro-exp-03-25"],
provider: AI_PROVIDERS.GOOGLE,
apiKey: "your-google-api-key",
}
);
// Google Vertex AI (requires gcloud CLI authentication)
// https://cloud.google.com/vertex-ai/generative-ai/docs/start/quickstarts/quickstart-multimodal
const googleVertexResponse = await sendPrompt(
{
messages: [{ role: "user", content: "Hello, who are you?" }],
systemPrompt: "You are a helpful assistant.",
},
{
model: ModelEnum["gemini-2.5-pro-exp-03-25"],
provider: AI_PROVIDERS.GOOGLE_VERTEX_AI,
vertexai: true,
project: process.env.GOOGLE_CLOUD_PROJECT!, // Your Google Cloud project ID
location: process.env.GOOGLE_CLOUD_LOCATION!, // Your Google Cloud location (e.g., "us-central1")
}
);
// OpenRouter
const openrouterResponse = await sendPrompt(
{
messages: [{ role: "user", content: "Hello, who are you?" }],
systemPrompt: "You are a helpful assistant.",
},
{
customModel: "meta-llama/llama-4-scout:free",
provider: AI_PROVIDERS.OPENROUTER,
apiKey: "your-openrouter-api-key",
headers: {
"HTTP-Referer": "https://eval.16x.engineer/",
"X-Title": "16x Eval",
},
}
);
// Fireworks
const fireworksResponse = await sendPrompt(
{
messages: [{ role: "user", content: "Hello, who are you?" }],
systemPrompt: "You are a helpful assistant.",
},
{
customModel: "accounts/fireworks/models/deepseek-v3-0324",
provider: AI_PROVIDERS.FIREWORKS,
apiKey: "your-fireworks-api-key",
}
);
// DeepSeek
const deepseekResponse = await sendPrompt(
{
messages: [{ role: "user", content: "Hello, who are you?" }],
systemPrompt: "You are a helpful assistant.",
},
{
customModel: "deepseek-chat",
provider: AI_PROVIDERS.DEEPSEEK,
apiKey: "your-deepseek-api-key",
}
);
// Custom Provider
const customResponse = await sendPrompt(
{
messages: [{ role: "user", content: "Hello, who are you?" }],
systemPrompt: "You are a helpful assistant.",
},
{
customModel: "custom-model",
provider: "custom",
baseURL: "https://your-custom-api.com/v1",
apiKey: "your-custom-api-key",
}
);
// All responses have the same structure
console.log(openaiResponse.message.content);
```
### Custom Models for First Party Providers
The `model` field is an enum of all models supported by the library, this is useful to avoid typos and to get the correct model information.
In case you want to use a model that is not yet available in the enum, you can use `customModel` field instead. This is supported for all first party providers (OpenAI, Anthropic, Google).
```typescript
// Using custom model string for new models
const response = await sendPrompt(
{
messages: [{ role: "user", content: "Hello, who are you?" }],
},
{
customModel: "gpt-4o-mini", // Custom model string
provider: AI_PROVIDERS.OPENAI,
apiKey: "your-openai-api-key",
}
);
```
Note that the `model` and `customModel` fields are mutually exclusive.
### Image Input
You can send images to models that support vision capabilities:
```typescript
const imageResponse = await sendPrompt(
{
messages: [
{
role: "user",
content: [
{ type: "text", text: "What's in this image?" },
{
type: "image_url",
image_url: {
url: "...", // base64 image data
},
},
],
},
],
},
{
model: ModelEnum["gpt-4.1"],
provider: AI_PROVIDERS.OPENAI,
apiKey: "your-openai-api-key",
}
);
```
### Function Calling
```typescript
// Define your tool
const calculatorTool = {
type: "function",
function: {
name: "calculator",
description: "Perform basic arithmetic calculations",
parameters: {
type: "object",
properties: {
operation: {
type: "string",
enum: ["add", "subtract", "multiply", "divide"],
description: "The arithmetic operation to perform",
},
a: {
type: "number",
description: "First number",
},
b: {
type: "number",
description: "Second number",
},
},
required: ["operation", "a", "b"],
additionalProperties: false,
},
strict: true,
},
};
const response = await sendPrompt(
{
messages: [{ role: "user", content: "What is 5 plus 3?" }],
tools: [calculatorTool],
},
{
model: ModelEnum["gpt-4.1"],
provider: AI_PROVIDERS.OPENAI,
apiKey: "your-openai-api-key",
}
);
// Expected response structure:
// {
// tool_calls: [
// {
// id: "call_123",
// type: "function",
// function: {
// name: "calculator",
// arguments: '{"operation":"add","a":5,"b":3}'
// }
// }
// ]
// }
// Handle the function call
if (response.tool_calls) {
const toolCall = response.tool_calls[0];
console.log("Tool called:", toolCall.function.name);
console.log("Arguments:", JSON.parse(toolCall.function.arguments));
}
```
### Provider Options
#### Headers
You can pass custom headers to providers using the `headers` option:
```typescript
const response = await sendPrompt(
{
messages: [{ role: "user", content: "Hello" }],
},
{
model: ModelEnum["gpt-4.1"],
provider: AI_PROVIDERS.OPENAI,
apiKey: "your-api-key",
headers: {
"Custom-Header": "value",
"X-Title": "My App",
},
}
);
```
#### Temperature
You can control the randomness of the model's responses using the `temperature` parameter. Temperature ranges from 0 to 2, where lower values make the output more focused and deterministic, while higher values make it more random and creative:
```typescript
const response = await sendPrompt(
{
messages: [{ role: "user", content: "Write a creative story" }],
temperature: 0.8, // More creative and random
},
{
model: ModelEnum["gpt-4.1"],
provider: AI_PROVIDERS.OPENAI,
apiKey: "your-api-key",
}
);
// For more deterministic responses
const deterministicResponse = await sendPrompt(
{
messages: [{ role: "user", content: "What is 2 + 2?" }],
temperature: 0.1, // More focused and deterministic
},
{
model: ModelEnum["claude-3-7-sonnet-20250219"],
provider: AI_PROVIDERS.ANTHROPIC,
apiKey: "your-api-key",
}
);
```
The temperature parameter is supported across all providers (OpenAI, Anthropic, Google, OpenRouter, Fireworks, DeepSeek, Azure OpenAI, and custom providers). If not specified, each provider will use its default temperature value.
#### Anthropic Max Tokens
For Anthropic models, you can control the maximum number of tokens in the response using the `anthropicMaxTokens` option:
```typescript
const response = await sendPrompt(
{
messages: [{ role: "user", content: "Write a long story" }],
anthropicMaxTokens: 2000, // Limit response to 2000 tokens
},
{
model: ModelEnum["claude-3-7-sonnet-20250219"],
provider: AI_PROVIDERS.ANTHROPIC,
apiKey: "your-anthropic-api-key",
}
);
```
If not specified, it will use the model's default output token limit or 4096 tokens, whichever is smaller. When using function calling, it will default to 4096 tokens.
#### Reasoning Extraction
For providers that support it (like DeepSeek), you can extract the model's reasoning from the response:
```typescript
const response = await sendPrompt(
{
messages: [
{ role: "user", content: "Solve this math problem: 2x + 5 = 15" },
],
},
{
model: ModelEnum["deepseek-reasoner"],
provider: AI_PROVIDERS.DEEPSEEK,
apiKey: "your-api-key",
}
);
if (response.reasoning) {
console.log("Model's reasoning:", response.reasoning);
}
```
### Streaming
You can stream responses from supported providers to get real-time content as it's generated. Streaming is supported for all providers.
```typescript
const response = await sendPrompt(
{
messages: [{ role: "user", content: "Write a short story about a robot" }],
stream: true,
onStreamingContent: (content: string) => {
// This callback is called for each chunk of content
process.stdout.write(content);
},
},
{
model: ModelEnum["gpt-4o-mini"],
provider: AI_PROVIDERS.OPENAI,
apiKey: "your-openai-api-key",
}
);
// The function still returns the complete response at the end
console.log("\n\nComplete response:", response.message.content);
console.log("Duration:", response.durationMs, "ms");
if (response.usage) {
console.log("Token usage:", response.usage);
}
```
**Streaming Limitations:**
- Cannot be used with function calling (`tools` parameter)
### Response Format
The response from `sendPrompt` follows a standardized format across all providers:
- `message`: The main response content
- `tool_calls`: Any function calls made by the model
- `reasoning`: The model's reasoning process (if available)
- `usage`: Token usage information
- `promptTokens`: Number of tokens in the input messages
- `thoughtsTokens`: Number of tokens used for reasoning (if available)
- `completionTokens`: Number of tokens in the model's response (includes thoughts tokens)
- `totalTokens`: Total tokens used (includes thoughts tokens)
- `durationMs`: The time taken by the API call in milliseconds
Example response:
```typescript
{
message: {
role: "assistant",
content: "I am a helpful assistant."
},
usage: {
completionTokens: 10,
promptTokens: 20,
totalTokens: 30,
thoughtsTokens: 0
},
durationMs: 1234
}
```
### Multi-round Tool Calls (Google)
For Google's Gemini models, you can handle multi-round tool calls by including function call and response messages in the conversation:
```typescript
// First round - model makes a function call
const firstResponse = await sendPrompt(
{
messages: [{ role: "user", content: "What is 15 plus 32?" }],
tools: [calculatorTool],
toolCallMode: "AUTO",
},
{
model: ModelEnum["gemini-2.5-pro-exp-03-25"],
provider: AI_PROVIDERS.GOOGLE,
apiKey: "your-google-api-key",
}
);
// Handle the function call and get the result
if (firstResponse.tool_calls) {
const toolCall = firstResponse.tool_calls[0];
const args = JSON.parse(toolCall.function.arguments);
const result = calculate(args.operation, args.a, args.b); // Your calculation function
// Second round - include function call and response in messages
const secondResponse = await sendPrompt(
{
messages: [
{ role: "user", content: "What is 15 plus 32?" },
{
role: "google_function_call",
id: toolCall.id,
name: toolCall.function.name,
args: args,
},
{
role: "google_function_response",
id: toolCall.id,
name: toolCall.function.name,
response: { result },
},
],
tools: [calculatorTool],
toolCallMode: "AUTO",
},
{
model: ModelEnum["gemini-2.5-pro-exp-03-25"],
provider: AI_PROVIDERS.GOOGLE,
apiKey: "your-google-api-key",
}
);
// The model will now respond with the final answer
console.log("Final response:", secondResponse.message.content);
}
```
The multi-round tool calling process involves:
1. First round: Model makes a function call
2. Your code executes the function and gets the result
3. Second round: Include both the function call and its response in the messages
4. Model provides the final response using the function result
## Roadmap
- [x] Support for DeepSeek
- [x] Support for image input
- [x] Support for streaming
- [ ] Better error handling