Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/pastas/metran
Multivariate timeseries analysis using dynamic factor modelling.
https://github.com/pastas/metran
analysis groundwater hydrology multivariate pastas python timeseries
Last synced: 25 days ago
JSON representation
Multivariate timeseries analysis using dynamic factor modelling.
- Host: GitHub
- URL: https://github.com/pastas/metran
- Owner: pastas
- License: mit
- Created: 2021-03-09T09:57:48.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2024-02-20T15:23:13.000Z (10 months ago)
- Last Synced: 2024-09-21T08:39:41.076Z (3 months ago)
- Topics: analysis, groundwater, hydrology, multivariate, pastas, python, timeseries
- Language: Python
- Homepage: https://metran.readthedocs.io
- Size: 14.9 MB
- Stars: 21
- Watchers: 9
- Forks: 5
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
[![metran](https://github.com/pastas/metran/actions/workflows/ci.yml/badge.svg)](https://github.com/pastas/metran/actions/workflows/ci.yml)
[![Documentation Status](https://readthedocs.org/projects/metran/badge/?version=latest)](https://metran.readthedocs.io/en/latest/?badge=latest)
[![Codacy Badge](https://app.codacy.com/project/badge/Grade/43056ec3f22341fa992fff4e7b2eeb73)](https://www.codacy.com/gh/pastas/metran/dashboard?utm_source=github.com&utm_medium=referral&utm_content=pastas/metran&utm_campaign=Badge_Grade)
[![Codacy Badge](https://app.codacy.com/project/badge/Coverage/43056ec3f22341fa992fff4e7b2eeb73)](https://www.codacy.com/gh/pastas/metran/dashboard?utm_source=github.com&utm_medium=referral&utm_content=pastas/metran&utm_campaign=Badge_Coverage)
![PyPI](https://img.shields.io/pypi/v/metran)# Metran
Metran is a package for performing multivariate timeseries analysis using a
technique called dynamic factor modelling. It can be used to describe the
variation among many variables in terms of a few underlying but unobserved
variables called factors.## Documentation
The documention can be found on [metran.readthedocs.io](https://metran.readthedocs.io/)
### Examples
For a brief introduction of the theory behind Metran on multivariate timeseries analysis with
dynamic factor modeling see the notebook:- [The Dynamic Factor Model](https://github.com/pastas/metran/blob/main/examples/dynamic_factor_model.ipynb)
A practical real-world example, as published in Stromingen (Van Geer, 2015), is given in the following notebook:
- [Metran practical example](https://github.com/pastas/metran/blob/main/examples/metran_practical_example.ipynb)
A notebook on how to use [Pastas](https://github.com/pastas/pastas) models output with Metran:
- [Pastas Metran example](https://github.com/pastas/metran/blob/main/examples/pastas_metran_example.ipynb)
## Installation
To install Metran, a working version of Python 3.8 or higher has to be installed on your computer.
We recommend using the [Anaconda distribution](https://www.anaconda.com/) as it includes most
of the python package dependencies and the Jupyter Notebook software to run the
notebooks. However, you are free to install any Python distribution you want.To install `metran`, type the following command
`pip install metran`
To install in development mode, clone the repository and type the following from the module root directory:
`pip install -e .`
### Dependencies
Metran has the following dependencies which are automatically installed if
not already available: `numpy`, `scipy`, `pandas`, `matplotlib`, `numba` and `pastas`## References
- Berendrecht, W.L. (2004). [State space modeling of groundwater fluctuations](https://repository.tudelft.nl/islandora/object/uuid:f12775fc-a804-4d4a-8872-664e5a61cbf5/datastream/OBJ). Doctoral Thesis, Delft University of Technology.
- Berendrecht, W.L., F.C. van Geer (2016). [A dynamic factor modeling framework for analyzing multiple groundwater head series simultaneously](http://dx.doi.org/10.1016/j.jhydrol.2016.02.028). Journal of Hydrology, 536, pp. 50-60.
- Van Geer, F.C. en W.L. Berendrecht (2015) [Meervoudige tijdreeksmodellen en de samenhang in stijghoogtereeksen](https://edepot.wur.nl/378871). Stromingen 23 nummer 3, pp. 25-36.