Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/pastas/metran

Multivariate timeseries analysis using dynamic factor modelling.
https://github.com/pastas/metran

analysis groundwater hydrology multivariate pastas python timeseries

Last synced: 25 days ago
JSON representation

Multivariate timeseries analysis using dynamic factor modelling.

Awesome Lists containing this project

README

        

[![metran](https://github.com/pastas/metran/actions/workflows/ci.yml/badge.svg)](https://github.com/pastas/metran/actions/workflows/ci.yml)
[![Documentation Status](https://readthedocs.org/projects/metran/badge/?version=latest)](https://metran.readthedocs.io/en/latest/?badge=latest)
[![Codacy Badge](https://app.codacy.com/project/badge/Grade/43056ec3f22341fa992fff4e7b2eeb73)](https://www.codacy.com/gh/pastas/metran/dashboard?utm_source=github.com&utm_medium=referral&utm_content=pastas/metran&utm_campaign=Badge_Grade)
[![Codacy Badge](https://app.codacy.com/project/badge/Coverage/43056ec3f22341fa992fff4e7b2eeb73)](https://www.codacy.com/gh/pastas/metran/dashboard?utm_source=github.com&utm_medium=referral&utm_content=pastas/metran&utm_campaign=Badge_Coverage)
![PyPI](https://img.shields.io/pypi/v/metran)

# Metran

Metran is a package for performing multivariate timeseries analysis using a
technique called dynamic factor modelling. It can be used to describe the
variation among many variables in terms of a few underlying but unobserved
variables called factors.

## Documentation

The documention can be found on [metran.readthedocs.io](https://metran.readthedocs.io/)

### Examples

For a brief introduction of the theory behind Metran on multivariate timeseries analysis with
dynamic factor modeling see the notebook:

- [The Dynamic Factor Model](https://github.com/pastas/metran/blob/main/examples/dynamic_factor_model.ipynb)

A practical real-world example, as published in Stromingen (Van Geer, 2015), is given in the following notebook:

- [Metran practical example](https://github.com/pastas/metran/blob/main/examples/metran_practical_example.ipynb)

A notebook on how to use [Pastas](https://github.com/pastas/pastas) models output with Metran:

- [Pastas Metran example](https://github.com/pastas/metran/blob/main/examples/pastas_metran_example.ipynb)

## Installation

To install Metran, a working version of Python 3.8 or higher has to be installed on your computer.
We recommend using the [Anaconda distribution](https://www.anaconda.com/) as it includes most
of the python package dependencies and the Jupyter Notebook software to run the
notebooks. However, you are free to install any Python distribution you want.

To install `metran`, type the following command

`pip install metran`

To install in development mode, clone the repository and type the following from the module root directory:

`pip install -e .`

### Dependencies

Metran has the following dependencies which are automatically installed if
not already available: `numpy`, `scipy`, `pandas`, `matplotlib`, `numba` and `pastas`

## References

- Berendrecht, W.L. (2004). [State space modeling of groundwater fluctuations](https://repository.tudelft.nl/islandora/object/uuid:f12775fc-a804-4d4a-8872-664e5a61cbf5/datastream/OBJ). Doctoral Thesis, Delft University of Technology.
- Berendrecht, W.L., F.C. van Geer (2016). [A dynamic factor modeling framework for analyzing multiple groundwater head series simultaneously](http://dx.doi.org/10.1016/j.jhydrol.2016.02.028). Journal of Hydrology, 536, pp. 50-60.
- Van Geer, F.C. en W.L. Berendrecht (2015) [Meervoudige tijdreeksmodellen en de samenhang in stijghoogtereeksen](https://edepot.wur.nl/378871). Stromingen 23 nummer 3, pp. 25-36.