Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/patilni3/matplotlib-in-depth
Python's Matplotlib Library for Data Analysis, Machine Learning, Data Science and many more...
https://github.com/patilni3/matplotlib-in-depth
data-analysis data-representation data-science data-visualization matplotlib matplotlib-pyplot plots-in-python powerbi seaborn
Last synced: 2 days ago
JSON representation
Python's Matplotlib Library for Data Analysis, Machine Learning, Data Science and many more...
- Host: GitHub
- URL: https://github.com/patilni3/matplotlib-in-depth
- Owner: PatilNi3
- Created: 2024-11-06T09:26:04.000Z (3 months ago)
- Default Branch: main
- Last Pushed: 2024-11-06T09:39:53.000Z (3 months ago)
- Last Synced: 2024-12-16T06:17:22.223Z (about 2 months ago)
- Topics: data-analysis, data-representation, data-science, data-visualization, matplotlib, matplotlib-pyplot, plots-in-python, powerbi, seaborn
- Language: Jupyter Notebook
- Homepage:
- Size: 1.62 MB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
## Introduction:
Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations.
Matplotlib is a widely-used plotting library for Python that allows users to create a variety of static, animated, and interactive visualizations in a simple and effective way. It is highly customizable and provides a range of options for creating high-quality graphs and plots.## Installation:
1. **pip:** pip install matplotlib
2. **conda:** conda install -c conda-forge matplotlib## Key Features
1. What is Matplotlib and What is Matplotlib Figure?
2. Advantages of Matplotlib
3. Different types of plots in Matplotlib with their use cases and examples
4. [Line Plot](#line-plot)
5. [Scatter Plot](#scatter-plot)
6. [Bar Plot](#bar-plot)
7. [Horizontal Bar Plot](#horizontal-bar-plot)
8. [Histogram](#histogram)
9. [Box Plot](#box-plot)
10. [Pie Chart](#pie-chart)
11. [Heatmap](#heatmap)
12. [Violin Plot](#violin-plot)
13. [3D Plot](#3d-plot)## Reference:
### 1. Books:
[Scientific Visualization: Python + Matplotlib (2021)](https://inria.hal.science/hal-03427242/) by Nicolas P. Rougier[Mastering matplotlib](https://www.packtpub.com/en-us/product/mastering-matplotlib-9781783987542) by Duncan M. McGreggor
[Interactive Applications Using Matplotlib](https://www.packtpub.com/en-us/product/interactive-applications-using-matplotlib-9781783988846) by Benjamin Root
### 2. Videos:
[Plotting with matplotlib](https://youtu.be/P7SVi0YTIuE?si=ltjzBnFTQlu3Fh6C) by Mike Müller[Introduction to NumPy and Matplotlib](https://youtu.be/3Fp1zn5ao2M?si=t8gWp21pyHAjwSJX) by Eric Jones
[Matplotlib Introduction](https://youtube.com/playlist?list=PLeo1K3hjS3uu4Lr8_kro2AqaO6CFYgKOl&si=Dul8vIVBKQADHMva) by codebasics
### 3. Tutorial:
[Matplotlib tutorial](https://github.com/rougier/matplotlib-tutorial) by Nicolas P. Rougier[Anatomy of Matplotlib - IPython Notebooks](https://github.com/matplotlib/AnatomyOfMatplotlib) by Benjamin Root
[Beyond the Basics: Data Visualization in Python](https://github.com/stefmolin/python-data-viz-workshop) by Stefanie Molin
# Thank You ☺