Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/patwie/robustkernelpaths
ICML paper: Robust and Efficient Kernel Hyperparameter Paths with Guarantees
https://github.com/patwie/robustkernelpaths
eigen hyperparameters icml kernel kernel-hyperparameter libsvm machine-learning machine-learning-algorithms
Last synced: 15 days ago
JSON representation
ICML paper: Robust and Efficient Kernel Hyperparameter Paths with Guarantees
- Host: GitHub
- URL: https://github.com/patwie/robustkernelpaths
- Owner: PatWie
- License: lgpl-3.0
- Created: 2014-08-18T18:41:47.000Z (over 10 years ago)
- Default Branch: master
- Last Pushed: 2023-01-10T09:21:26.000Z (almost 2 years ago)
- Last Synced: 2024-10-30T07:28:20.942Z (2 months ago)
- Topics: eigen, hyperparameters, icml, kernel, kernel-hyperparameter, libsvm, machine-learning, machine-learning-algorithms
- Language: C++
- Homepage: http://patwie.com
- Size: 31.3 KB
- Stars: 2
- Watchers: 3
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Robust and Efficient Kernel Hyperparameter Paths with Guarantees
**auto finetuning, svm, parameters, kernel parameter, choose parameters **
The results of non-linear SVM classifications heavily rely on the choose of the kernel hyperparameter, i.e. , \lambda in $k(x,y)=\exp(-\lambda \Vert{x-y}\Vert²)$ in the kernel function.
This repository contains an effective algorithmn that calculates an approximate entire solution path of the objective function with respect to the hyperparameter within the interval $[2^{-10},2^{10}]$ without numerical issues by which the exact algorithms suffer.
More details can be found in the corresponding [paper][paper].For the matrix calculation the [library Eigen][eigen] was used in combination with [OpenMP][openmp]. The backend solver is [libSVM][libsvm]
The program reads the problem description in the default libSVM format. See the documented source for more information or run the compiled program without any parameters to get help.
### weblinks
* [jmlr](http://jmlr.org/proceedings/papers/v32/giesen14.html) entry
* [paper](http://jmlr.org/proceedings/papers/v32/giesen14.pdf) pdf format
[jmlr]:http://jmlr.org/proceedings/papers/v32/giesen14.html
[paper]:http://jmlr.org/proceedings/papers/v32/giesen14.pdf
[eigen]:http://eigen.tuxfamily.org/index.php?title=Main_Page
[libsvm]:http://www.csie.ntu.edu.tw/~cjlin/libsvm/
[openmp]:http://openmp.org/wp/