Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/patwie/robustkernelpaths

ICML paper: Robust and Efficient Kernel Hyperparameter Paths with Guarantees
https://github.com/patwie/robustkernelpaths

eigen hyperparameters icml kernel kernel-hyperparameter libsvm machine-learning machine-learning-algorithms

Last synced: 15 days ago
JSON representation

ICML paper: Robust and Efficient Kernel Hyperparameter Paths with Guarantees

Awesome Lists containing this project

README

        

# Robust and Efficient Kernel Hyperparameter Paths with Guarantees

**auto finetuning, svm, parameters, kernel parameter, choose parameters **

The results of non-linear SVM classifications heavily rely on the choose of the kernel hyperparameter, i.e. , \lambda in $k(x,y)=\exp(-\lambda \Vert{x-y}\Vert²)$ in the kernel function.
This repository contains an effective algorithmn that calculates an approximate entire solution path of the objective function with respect to the hyperparameter within the interval $[2^{-10},2^{10}]$ without numerical issues by which the exact algorithms suffer.
More details can be found in the corresponding [paper][paper].

For the matrix calculation the [library Eigen][eigen] was used in combination with [OpenMP][openmp]. The backend solver is [libSVM][libsvm]

The program reads the problem description in the default libSVM format. See the documented source for more information or run the compiled program without any parameters to get help.

### weblinks

* [jmlr](http://jmlr.org/proceedings/papers/v32/giesen14.html) entry
* [paper](http://jmlr.org/proceedings/papers/v32/giesen14.pdf) pdf format


[jmlr]:http://jmlr.org/proceedings/papers/v32/giesen14.html
[paper]:http://jmlr.org/proceedings/papers/v32/giesen14.pdf
[eigen]:http://eigen.tuxfamily.org/index.php?title=Main_Page
[libsvm]:http://www.csie.ntu.edu.tw/~cjlin/libsvm/
[openmp]:http://openmp.org/wp/