An open API service indexing awesome lists of open source software.

https://github.com/paulchen2713/scrap-nstc-html-files

從國科會網站 (.aspx) 找清大每位教師的補助研究計畫資料 (.html),抓取 年度、姓名、系所、計畫名稱、執行年限、金額 等資訊整理成一個檔案。
https://github.com/paulchen2713/scrap-nstc-html-files

html-parser nstc nthu python scraping-data

Last synced: 3 months ago
JSON representation

從國科會網站 (.aspx) 找清大每位教師的補助研究計畫資料 (.html),抓取 年度、姓名、系所、計畫名稱、執行年限、金額 等資訊整理成一個檔案。

Awesome Lists containing this project

README

        

# Scrap-NSTC-HTML-Files
從[國科會網站](https://wsts.nstc.gov.tw/STSWeb/Award/AwardMultiQuery.aspx) (.aspx) 找清大每位教師的[國家科學及技術委員會補助研究計畫資料](https://wsts.nstc.gov.tw/STSWeb/Award/AwardMultiQuery.aspx?year=107&code=QS01&organ=A%2CFA04%2C&name=) (.html),抓取 107-111 年度、姓名、系所、計畫名稱、執行年限、金額 等資訊整理成一個檔案。

註: 這不是爬蟲,只是從靜態 html 網頁內容把想要的資料撈出來而已,且要自己手動 Ctrl + Shift + C 把每 1 頁 (1 頁 200 筆) 共 14 頁的 html 網頁內容存下來。

### Tag examples
```htmlembedded

110
鍾偉和
國立清華大學通訊工程研究所

運用機器學習於巨量多天線傳輸系統之設計

2021/08/01~2024/07/31

3,036,000元 
```
```htmlembedded

107
鍾偉和
國立清華大學電機工程學系(所)

適用於智慧型物聯人聯網中之多天線系統訊號處理

2018/08/01~2021/10/31

2,598,000元 
```

### Sample code
```python
import os
import csv
import openpyxl
from openpyxl import Workbook
from bs4 import BeautifulSoup

# Prepare the Excel workbook
wb = Workbook()
ws = wb.active
ws.title = "Extracted Data"
ws.append(['Fiscal Year', 'Professor Name', 'Department', 'Project Name', 'Project Duration', 'Project Cost'])

# Prepare CSV output
csv_data = []
csv_data.append(['Fiscal Year', 'Professor Name', 'Department', 'Project Name', 'Project Duration', 'Project Cost'])

# Get all HTML filenames from the data folder
data_folder = 'data'
html_files = [f for f in os.listdir(data_folder) if f.endswith('.html')]

# Iterate through all HTML files in the data folder
for file_name in html_files:
file_path = os.path.join(data_folder, file_name)
with open(file_path, 'r', encoding='utf-8') as file:
soup = BeautifulSoup(file, 'html.parser')

# Find all rows of the table
rows = soup.find_all('tr', class_=['Grid_AlternatingRow', 'Grid_Row'])

# Iterate through each row and extract the required information
for row in rows:
fiscal_year = row.find_all('td')[0].get_text(strip=True)
professor_name = row.find_all('td')[1].get_text(strip=True)
department = row.find_all('td')[2].get_text(strip=True)
project_name = row.find('span', id=lambda x: x and 'lblAWARD_PLAN_CHI_DESCc' in x).get_text(strip=True).replace('\n', '').replace('\r', '').replace('\t', '').replace(' ', '')
project_duration = row.find('span', id=lambda x: x and 'lblAWARD_ST_ENDc' in x).get_text(strip=True)
project_cost = row.find('span', id=lambda x: x and 'lblAWARD_TOT_AUD_AMTc' in x).get_text(strip=True)

# Write to Excel
ws.append([fiscal_year, professor_name, department, project_name, project_duration, project_cost])

# Add to CSV data
csv_data.append([fiscal_year, professor_name, department, project_name, project_duration, project_cost])

# Set the output file name
excel_filename = "combined_extracted_data"
csv_filename = excel_filename

# Save the Excel file
if os.path.isfile(f'{excel_filename}.xlsx') is False:
wb.save(f'{excel_filename}.xlsx')

# Save the CSV file
if os.path.isfile(f'{csv_filename}.csv') is False:
with open(f'{csv_filename}.csv', 'w', newline='', encoding='utf-8-sig') as csvfile:
writer = csv.writer(csvfile)
writer.writerows(csv_data)

print(f"Data extraction complete. Check '{excel_filename}.xlsx' and '{csv_filename}.csv' for the output.")
```