Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/paulgoldbaum/scala-influxdb-client
Asynchronous InfluxDB client for Scala
https://github.com/paulgoldbaum/scala-influxdb-client
Last synced: 2 months ago
JSON representation
Asynchronous InfluxDB client for Scala
- Host: GitHub
- URL: https://github.com/paulgoldbaum/scala-influxdb-client
- Owner: paulgoldbaum
- License: mit
- Created: 2015-09-26T16:56:33.000Z (over 9 years ago)
- Default Branch: master
- Last Pushed: 2019-08-23T09:36:59.000Z (over 5 years ago)
- Last Synced: 2024-08-02T07:10:35.728Z (5 months ago)
- Language: Scala
- Homepage:
- Size: 157 KB
- Stars: 122
- Watchers: 8
- Forks: 35
- Open Issues: 8
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-influxdb - scala-influxdb-client - Asynchronous InfluxDB client for Scala (Client libraries / Unofficial)
README
scala-influxdb-client
=====================[![Build Status](https://travis-ci.org/paulgoldbaum/scala-influxdb-client.svg?branch=master)](https://travis-ci.org/paulgoldbaum/scala-influxdb-client)
[![codecov.io](http://codecov.io/github/paulgoldbaum/scala-influxdb-client/coverage.svg?branch=master)](http://codecov.io/github/paulgoldbaum/scala-influxdb-client?branch=master)Asynchronous library for accessing InfluxDB from Scala.
## Installation
Add the following to your `build.sbt`
```scala
libraryDependencies += "com.paulgoldbaum" %% "scala-influxdb-client" % "0.6.1"
```
**NOTE**: Starting with version 0.5.0 JDK 8 is required.## Connecting
```scala
import com.paulgoldbaum.influxdbclient._
import scala.concurrent.ExecutionContext.Implicits.globalval influxdb = InfluxDB.connect("localhost", 8086)
```And when all done close the client:
```scala
influxdb.close()
```## Usage
All methods are non-blocking and return a `Future`; in most cases a `Future[QueryResponse]` which might be empty if
the action does not return a result. Failing `Futures` carry a subclass of `InfluxDBException`### Working with databases
```scala
val database = influxdb.selectDatabase("my_database")
database.exists() // => Future[Boolean]
database.create()
database.drop()
```### Writing data
```scala
val point = Point("cpu")
.addTag("host", "my.server")
.addField("1m", 0.3)
.addField("5m", 0.4)
.addField("15m", 0.5)
database.write(point)
```
Additionally, timestamp precision, consistency and custom retention policies can be specified
```scala
val point = Point("cpu", System.currentTimeMillis())
database.write(point,
precision = Precision.MILLISECONDS,
consistency = Consistency.ALL,
retentionPolicy = "custom_rp")
```
If no precision parameter is given, InfluxDB assumes timestamps to be in nanoseconds.If a write fails, it's future will contain a subclass of `WriteException`. This can be handled through the usual
methods of error handling in `Futures`, i.e.
```scala
database.write(point)
// ...
.recover{ case e: WriteException => ...}
```Multiple points can be written in one operation by using the bulkWrite operation
```scala
val points = List(
Point("test_measurement1").addField("value1", 123),
Point("test_measurement2").addField("value2", 123),
Point("test_measurement3").addField("value3", 123)
)
database.bulkWrite(points, precision = Precision.MILLISECONDS)
```### Querying the database
Given the following data:
```
name: cpu
---------
time host region value
2015-10-14T18:31:14.744203449Z serverA us_west 0.64
2015-10-14T18:31:19.242472211Z serverA us_west 0.85
2015-10-14T18:31:22.644254309Z serverA us_west 0.43
```
```scala
database.query("SELECT * FROM cpu")
```
This returns a `Future[QueryResult]`. To access the list of records use
```scala
result.series.head.records
```
which we can iterate to access the different fields
```scala
result.series.head.records.foreach(record => record("host"))
```
For each record, we can access all it's values at once using the allValues property
```scala
result.series.head.records(0).allValues
```If we are only interested in the "value" field of each record
```scala
result.series.head.points("value")
```
returns a list of just the `value` field of each record.The list of column names can be accessed through
```scala
result.series.head.columns
```Multiple queries can be sent to the server at the same time using the `multiQuery` method
```scala
database.multiQuery(List("SELECT * FROM cpu LIMIT 5", "SELECT * FROM cpu LIMIT 5 OFFSET 5"))
```In this case, the result is a `Future[List[QueryResult]]`.
Errors during queries return a `QueryException`.
### Executing actions
To execute any action that is not covered by the API you can use the `exec` method
```scala
influxdb.exec("CREATE CONTINUOUS QUERY ...")
```### Managing users
```scala
influxdb.createUser(username, password, isClusterAdmin)
influxdb.dropUser(username)
influxdb.showUsers()
influxdb.setUserPassword(username, password)
influxdb.grantPrivileges(username, database, privilege)
influxdb.revokePrivileges(username, database, privilege)
influxdb.makeClusterAdmin(username)
influxdb.userIsClusterAdmin(username)
```### Managing retention policies
```scala
database.createRetentionPolicy(name, duration, replication, default)
database.showRetentionPolicies()
database.dropRetentionPolicy(name)
database.alterRetentionPolicy(name, duration, replication, default)
```**NOTE**: User and retention policy management primitives return an empty `QueryResult` or fail with a `QueryException` in case of an error.
### Writing over UDP
```scala
import com.paulgoldbaum.influxdbclient._val udpClient = InfluxDB.udpConnect("localhost", 8086)
val point = Point("cpu", System.currentTimeMillis())
udpClient.write(point)
```
Points can also be written in bulk
```scala
val points = List(
Point("test_measurement1").addField("value1", 123),
Point("test_measurement2").addField("value2", 123),
Point("test_measurement3").addField("value3", 123)
)
udpClient.bulkWrite(points)
```