Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/paulhendricks/gym-r

An R package providing access to the OpenAI Gym API
https://github.com/paulhendricks/gym-r

openai-gym openai-universe r reinforcement-learning

Last synced: 2 months ago
JSON representation

An R package providing access to the OpenAI Gym API

Awesome Lists containing this project

README

        

gym
===

[![CRAN\_Status\_Badge](http://www.r-pkg.org/badges/version/gym)](http://cran.r-project.org/package=gym) [![Downloads from the RStudio CRAN mirror](http://cranlogs.r-pkg.org/badges/gym)](http://cran.rstudio.com/package=gym) [![Project Status: Active - The project has reached a stable, usable state and is being actively developed.](http://www.repostatus.org/badges/0.1.0/active.svg)](http://www.repostatus.org/#active)

[OpenAI Gym](https://github.com/openai/gym) is a open-source Python toolkit for developing and comparing reinforcement learning algorithms. This R package is a wrapper for the [OpenAI Gym API](https://github.com/openai/gym-http-api), and enables access to an ever-growing variety of environments.

Installation
------------

You can install the latest development version from CRAN:

``` r
install.packages("gym")
```

Or from GitHub with:

``` r
if (packageVersion("devtools") < 1.6) {
install.packages("devtools")
}
devtools::install_github("paulhendricks/gym-R", subdir = "R")
```

If you encounter a clear bug, please file a [minimal reproducible example](http://stackoverflow.com/questions/5963269/how-to-make-a-great-r-reproducible-example) on [GitHub](https://github.com/paulhendricks/gym/issues).

Getting started
---------------

### Setting up the server

To download the code and install the requirements, you can run the following shell commands:

``` bash
git clone https://github.com/openai/gym-http-api
cd gym-http-api
pip install -r requirements.txt
```

This code is intended to be run locally by a single user. The server runs in python.

To start the server from the command line, run this:

``` bash
python gym_http_server.py
```

For more details, please see here: .

### Running an example in R

In a separate R terminal, you can then try running the example agent and see what happens:

``` r
library(gym)

remote_base <- "http://127.0.0.1:5000"
client <- create_GymClient(remote_base)
print(client)

# Create environment
env_id <- "CartPole-v0"
instance_id <- env_create(client, env_id)
print(instance_id)

# List all environments
all_envs <- env_list_all(client)
print(all_envs)

# Set up agent
action_space_info <- env_action_space_info(client, instance_id)
print(action_space_info)
agent <- random_discrete_agent(action_space_info[["n"]])

# Run experiment, with monitor
outdir <- "/tmp/random-agent-results"
env_monitor_start(client, instance_id, outdir, force = TRUE, resume = FALSE)

episode_count <- 100
max_steps <- 200
reward <- 0
done <- FALSE

for (i in 1:episode_count) {
ob <- env_reset(client, instance_id)
for (i in 1:max_steps) {
action <- env_action_space_sample(client, instance_id)
results <- env_step(client, instance_id, action, render = TRUE)
if (results[["done"]]) break
}
}

# Dump result info to disk
env_monitor_close(client, instance_id)
```

Citation
--------

To cite package ‘gym’ in publications use:

Paul Hendricks (2016). gym: Provides Access to the OpenAI Gym API. R package version 0.1.0. https://CRAN.R-project.org/package=gym

A BibTeX entry for LaTeX users is

@Manual{,
title = {gym: Provides Access to the OpenAI Gym API},
author = {Paul Hendricks},
year = {2016},
note = {R package version 0.1.0},
url = {https://CRAN.R-project.org/package=gym},
}