Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/pb2204/medical-insurance-cost-prediction
This Medical Insurance Cost Prediction AI Model Will Predict The Cost Of Any Medical Insurance With Around 84.26 % Accuracy...
https://github.com/pb2204/medical-insurance-cost-prediction
ai artificial-intelligence hacktoberfest hacktoberfest-accepted jupyter-notebook machine-learning python streamlit streamlit-webapp
Last synced: about 1 month ago
JSON representation
This Medical Insurance Cost Prediction AI Model Will Predict The Cost Of Any Medical Insurance With Around 84.26 % Accuracy...
- Host: GitHub
- URL: https://github.com/pb2204/medical-insurance-cost-prediction
- Owner: PB2204
- License: apache-2.0
- Created: 2023-06-09T19:10:11.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-06-08T01:38:33.000Z (7 months ago)
- Last Synced: 2024-06-08T02:39:35.959Z (7 months ago)
- Topics: ai, artificial-intelligence, hacktoberfest, hacktoberfest-accepted, jupyter-notebook, machine-learning, python, streamlit, streamlit-webapp
- Language: Jupyter Notebook
- Homepage: https://pb2204-medical-insurance-cost-prediction-main-e9x4iq.streamlit.app/
- Size: 2.24 MB
- Stars: 19
- Watchers: 1
- Forks: 0
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Medical-Insurance-Cost-Prediction
This Medical Insurance Cost Prediction AI Model Will Predict The Cost Of Any Medical Insurance With Around 84.26 % Accuracy...![Type](https://img.shields.io/badge/Machine-Learning-red.svg)
![IDE](https://img.shields.io/badge/IDE-JupyterNotebook-orange.svg)
![Type](https://img.shields.io/badge/Type-Supervised-yellow.svg)
![Status](https://img.shields.io/badge/Status-Completed-cherryred.svg)Link to the web app :
Work Flow Of This Project
```mermaid
flowchart TD
A[Step 0 : Collect Data] --> B[Step 1 : Import Libraries/Modules In The Workspace]
B[Step 1 : Import Libraries/Modules In The Workspace] --> C[Step 2 : Import The Collected Data Into The Workspace]
C[Step 2 : Import The Collected Data Into The Workspace] --> D[Step 3 : Data Preprocessing]
D[Step 3 : Data Preprocessing] --> E[Step 4 : Training A ML Model Using Random Forest Regression Algorithm]
E[Step 4 : Training A ML Model Using Random Forest Regression Algorithm] --> F[Step 5 : Deploy The ML model As A Web App With Stremlit]```