Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/pbenner/autodiff
Autodiff is a numerical library for the Go programming language that supports automatic differentiation. It implements routines for linear algebra (vector/matrix operations), numerical optimization and statistics
https://github.com/pbenner/autodiff
automatic-differentiation bfgs cholesky-decomposition determinant eigenvalues gauss-jordan go golang gram-schmidt hessenberg-reduction linear-algebra linear-algebra-library newton-raphson numerical-optimization qr-algorithm rprop singular-value-decomposition special-functions statistical-models statistics
Last synced: about 2 months ago
JSON representation
Autodiff is a numerical library for the Go programming language that supports automatic differentiation. It implements routines for linear algebra (vector/matrix operations), numerical optimization and statistics
- Host: GitHub
- URL: https://github.com/pbenner/autodiff
- Owner: pbenner
- License: gpl-3.0
- Created: 2016-04-18T10:22:35.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2021-12-08T10:11:08.000Z (about 3 years ago)
- Last Synced: 2024-10-12T15:59:30.275Z (2 months ago)
- Topics: automatic-differentiation, bfgs, cholesky-decomposition, determinant, eigenvalues, gauss-jordan, go, golang, gram-schmidt, hessenberg-reduction, linear-algebra, linear-algebra-library, newton-raphson, numerical-optimization, qr-algorithm, rprop, singular-value-decomposition, special-functions, statistical-models, statistics
- Language: Go
- Homepage:
- Size: 7.86 MB
- Stars: 55
- Watchers: 6
- Forks: 4
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
## Documentation
Autodiff is a numerical optimization and linear algebra library for the Go / Golang programming language. It implements basic automatic differentation for many mathematical routines. The documentation of this package can be found [here](https://godoc.org/github.com/pbenner/autodiff).
## Scalars
Autodiff defines three different scalar types. A *Scalar* contains a single mutable value that can be the result of a mathematical operation, whereas the value of a *ConstScalar* is constant and fixed when the scalar is created. Automatic differentiation is implemented by *MagicScalar* types that allow to compute first and second order derivatives. Autodiff supports the following scalars types:
| Scalar | Implemented interfaces
|--------------|------------------------------------------------------ |
| ConstInt8 | ConstScalar |
| ConstInt16 | ConstScalar |
| ConstInt32 | ConstScalar |
| ConstInt64 | ConstScalar |
| ConstInt | ConstScalar |
| ConstFloat32 | ConstScalar |
| ConstFloat64 | ConstScalar |
| Int8 | ConstScalar, Scalar |
| Int16 | ConstScalar, Scalar |
| Int32 | ConstScalar, Scalar |
| Int64 | ConstScalar, Scalar |
| Int | ConstScalar, Scalar |
| Float32 | ConstScalar, Scalar |
| Float64 | ConstScalar, Scalar |
| Real32 | ConstScalar, Scalar, MagicScalar |
| Real64 | ConstScalar, Scalar, MagicScalar |The *ConstScalar*, *Scalar* and *MagicScalar* interfaces define the following operations:
| Function | Description |
|--------------|------------------------------------------------------ |
| GetInt8 | Get value as int8 |
| GetInt16 | Get value as int16 |
| GetInt32 | Get value as int32 |
| GetInt64 | Get value as int64 |
| GetInt | Get value as int |
| GetFloat32 | Get value as float32 |
| GetFloat64 | Get value as float64 |
| Equals | Check if two constants are equal |
| Greater | True if first constant is greater |
| Smaller | True if first constant is smaller |
| Sign | Returns the sign of the scalar |The *Scalar* and *MagicScalar* interfaces define the following operations:
| Function | Description |
|--------------|------------------------------------------------------ |
| SetInt8 | Set value by passing an int8 variable |
| SetInt16 | Set value by passing an int16 variable |
| SetInt32 | Set value by passing an int32 variable |
| SetInt64 | Set value by passing an int64 variable |
| SetInt | Set value by passing an int variable |
| SetFloat32 | Set value by passing an float32 variable |
| SetFloat64 | Set value by passing an float64 variable |The *Scalar* and *MagicScalar* interfaces define the following mathematical operations:
| Function | Description |
| ------------ | ----------------------------------------------------- |
| Min | Minimum |
| Max | Maximum |
| Abs | Absolute value |
| Sign | Sign |
| Neg | Negation |
| Add | Addition |
| Sub | Substraction |
| Mul | Multiplication |
| Div | Division |
| Pow | Power |
| Sqrt | Square root |
| Exp | Exponential function |
| Log | Logarithm |
| Log1p | Logarithm of 1+x |
| Log1pExp | Logarithm of 1+Exp(x) |
| Logistic | Standard logistic function |
| Erf | Error function |
| Erfc | Complementary error function |
| LogErfc | Log complementary error function |
| Sigmoid | Numerically stable sigmoid function |
| Sin | Sine |
| Sinh | Hyperbolic sine |
| Cos | Cosine |
| Cosh | Hyperbolic cosine |
| Tan | Tangent |
| Tanh | Hyperbolic tangent |
| LogAdd | Addition on log scale |
| LogSub | Substraction on log scale |
| SmoothMax | Differentiable maximum |
| LogSmoothMax | Differentiable maximum on log scale |
| Gamma | Gamma function |
| Lgamma | Log gamma function |
| Mlgamma | Multivariate log gamma function |
| GammaP | Lower incomplete gamma function |
| BesselI | Modified Bessel function of the first kind |
| LogBesselI | Log of the Modified Bessel function of the first kind |## Vectors and Matrices
Autodiff implements dense and sparse vectors and matrices that support basic linear algebra operations. The following vector and matrix types are provided by autodiff:
| Type | Scalar | Description |
|--------------------------|--------------|----------------------------------------|
| DenseInt8Vector | Int8 | Dense vector of Int8 scalars |
| DenseInt16Vector | Int16 | Dense vector of Int16 scalars |
| DenseInt32Vector | Int32 | Dense vector of Int32 scalars |
| DenseInt64Vector | Int64 | Dense vector of Int64 scalars |
| DenseIntVector | Int | Dense vector of Int scalars |
| DenseFloat32Vector | Float32 | Dense vector of Float32 scalars |
| DenseFloat64Vector | Float64 | Dense vector of Float64 scalars |
| DenseReal32Vector | Real32 | Dense vector of Real32 scalars |
| DenseReal64Vector | Real64 | Dense vector of Real64 scalars |
| SparseInt8Vector | Int8 | Sparse vector of Int8 scalars |
| SparseInt16Vector | Int16 | Sparse vector of Int16 scalars |
| SparseInt32Vector | Int32 | Sparse vector of Int32 scalars |
| SparseInt64Vector | Int64 | Sparse vector of Int64 scalars |
| SparseIntVector | Int | Sparse vector of Int scalars |
| SparseFloat32Vector | Float32 | Sparse vector of Float32 scalars |
| SparseFloat64Vector | Float64 | Sparse vector of Float64 scalars |
| SparseReal32Vector | Real32 | Sparse vector of Real32 scalars |
| SparseReal64Vector | Real64 | Sparse vector of Real64 scalars |
| SparseConstInt8Vector | ConstInt8 | Sparse vector of ConstInt8 scalars |
| SparseConstInt16Vector | ConstInt16 | Sparse vector of ConstInt16 scalars |
| SparseConstInt32Vector | ConstInt32 | Sparse vector of ConstInt32 scalars |
| SparseConstInt64Vector | ConstInt64 | Sparse vector of ConstInt64 scalars |
| SparseConstIntVector | ConstInt | Sparse vector of ConstInt scalars |
| SparseConstFloat32Vector | ConstFloat32 | Sparse vector of ConstFloat32 scalars |
| SparseConstFloat64Vector | ConstFloat64 | Sparse vector of ConstFloat64 scalars |
| DenseInt8Matrix | Int8 | Dense matrix of Int8 scalars |
| DenseInt16Matrix | Int16 | Dense matrix of Int16 scalars |
| DenseInt32Matrix | Int32 | Dense matrix of Int32 scalars |
| DenseInt64Matrix | Int64 | Dense matrix of Int64 scalars |
| DenseIntMatrix | Int | Dense matrix of Int scalars |
| DenseFloat32Matrix | Float32 | Dense matrix of Float32 scalars |
| DenseFloat64Matrix | Float64 | Dense matrix of Float64 scalars |
| DenseReal32Matrix | Real32 | Dense matrix of Real32 scalars |
| DenseReal64Matrix | Real64 | Dense matrix of Real64 scalars |
| SparseInt8Matrix | Int8 | Sparse matrix of Int8 scalars |
| SparseInt16Matrix | Int16 | Sparse matrix of Int16 scalars |
| SparseInt32Matrix | Int32 | Sparse matrix of Int32 scalars |
| SparseInt64Matrix | Int64 | Sparse matrix of Int64 scalars |
| SparseIntMatrix | Int | Sparse matrix of Int scalars |
| SparseFloat32Matrix | Float32 | Sparse matrix of Float32 scalars |
| SparseFloat64Matrix | Float64 | Sparse matrix of Float64 scalars |
| SparseReal32Matrix | Real32 | Sparse matrix of Real32 scalars |
| SparseReal64Matrix | Real64 | Sparse matrix of Real64 scalars |Autodiff defines three vector interfaces *ConstVector*, *Vector*, and *MagicVector*:
| Interface | Function | Description |
|----------------------------------|-------------------|-----------------------------------------------------------|
| ConstVector | Dim | Return the length of the vector |
| ConstVector | Equals | Returns true if the two vectors are equal |
| ConstVector | Table | Converts vector to a string |
| ConstVector | Int8At | Returns the scalar at the given position as int8 |
| ConstVector | Int16At | Returns the scalar at the given position as int16 |
| ConstVector | Int32At | Returns the scalar at the given position as int32 |
| ConstVector | Int64At | Returns the scalar at the given position as int64 |
| ConstVector | IntAt | Returns the scalar at the given position as int |
| ConstVector | Float32At | Returns the scalar at the given position as Float32 |
| ConstVector | Float64At | Returns the scalar at the given position as Float64 |
| ConstVector | ConstAt | Returns the scalar at the given position as *ConstScalar* |
| ConstVector | ConstSlice | Returns a slice as a constant vector (*ConstVector*) |
| ConstVector | AsConstMatrix | Convert vector to a matrix of type *ConstMatrix* |
| ConstVector | ConstIterator | Returns a constant iterator |
| ConstVector | CloneConstVector | Return a deep copy of the vector as *ConstVector* |
| ConstVector, Vector | At | Return the scalar the given index |
| ConstVector, Vector | Reset | Set all scalars to zero |
| ConstVector, Vector | Set | Set the value and derivatives of a scalar |
| ConstVector, Vector | Slice | Return a slice of the vector |
| ConstVector, Vector | Export | Export vector to file |
| ConstVector, Vector | Permute | Permute elements of the vector |
| ConstVector, Vector | ReverseOrder | Reverse the order of vector elements |
| ConstVector, Vector | Sort | Sort vector elements |
| ConstVector, Vector | AppendScalar | Append a single scalar to the vector |
| ConstVector, Vector | AppendVector | Append another vector |
| ConstVector, Vector | Swap | Swap two elements of the vector |
| ConstVector, Vector | AsMatrix | Convert vector to a matrix |
| ConstVector, Vector | Iterator | Returns an iterator |
| ConstVector, Vector | CloneVector | Return a deep copy of the vector as *Vector* |
| ConstVector, Vector, MagicVector | MagicAt | Returns the scalar at the given position as *MagicScalar* |
| ConstVector, Vector, MagicVector | MagicSlice | Resutns a slice as a magic vector (*MagicVector*) |
| ConstVector, Vector, MagicVector | AppendMagicScalar | Append a single magic scalar |
| ConstVector, Vector, MagicVector | AppendMagicVector | Append a magic vector |
| ConstVector, Vector, MagicVector | AsMagicMatrix | Convert vector to a matrix of type *MagicMatrix* |
| ConstVector, Vector, MagicVector | CloneMagicVector | Return a deep copy of the vector as *MagicVector* |Vectors support the following mathematical operations:
| Function | Description |
| -------- | -------------------------------- |
| VaddV | Element-wise addition |
| VsubV | Element-wise substraction |
| VmulV | Element-wise multiplication |
| VdivV | Element-wise division |
| VaddS | Addition of a scalar |
| VsubS | Substraction of a scalar |
| VmulS | Multiplication with a scalar |
| VdivS | Division by a scalar |
| VdotV | Dot product |Autodiff defines three matrix interfaces *ConstMatrix*, *Matrix*, and *MagicMatrix*:
| Interface | Function | Description |
|----------------------------------|-------------------|-----------------------------------------------------------|
| ConstMatrix | Dims | Return the number of rows and columns of the matrix |
| ConstMatrix | Equals | Returns true if the two matrixs are equal |
| ConstMatrix | Table | Converts matrix to a string |
| ConstMatrix | Int8At | Returns the scalar at the given position as int8 |
| ConstMatrix | Int16At | Returns the scalar at the given position as int16 |
| ConstMatrix | Int32At | Returns the scalar at the given position as int32 |
| ConstMatrix | Int64At | Returns the scalar at the given position as int64 |
| ConstMatrix | IntAt | Returns the scalar at the given position as int |
| ConstMatrix | Float32At | Returns the scalar at the given position as Float32 |
| ConstMatrix | Float64At | Returns the scalar at the given position as Float64 |
| ConstMatrix | ConstAt | Returns the scalar at the given position as *ConstScalar* |
| ConstMatrix | ConstSlice | Returns a slice as a constant matrix (*ConstMatrix*) |
| ConstMatrix | ConstRow | Returns the ith row as a *ConstVector* |
| ConstMatrix | ConstCol | Returns the jth column as a *ConstVector* |
| ConstMatrix | ConstIterator | Returns a constant iterator |
| ConstMatrix | AsConstVector | Convert matrix to a vector of type *ConstVector* |
| ConstMatrix | CloneConstMatrix | Return a deep copy of the matrix as *ConstMatrix* |
| ConstMatrix, Matrix | At | Return the scalar the given index |
| ConstMatrix, Matrix | Reset | Set all scalars to zero |
| ConstMatrix, Matrix | Set | Set the value and derivatives of a scalar |
| ConstMatrix, Matrix | Slice | Return a slice of the matrix |
| ConstMatrix, Matrix | Export | Export matrix to file |
| ConstMatrix, Matrix | Permute | Permute elements of the matrix |
| ConstMatrix, Matrix | ReverseOrder | Reverse the order of matrix elements |
| ConstMatrix, Matrix | Sort | Sort matrix elements |
| ConstMatrix, Matrix | AppendScalar | Append a single scalar to the matrix |
| ConstMatrix, Matrix | AppendMatrix | Append another matrix |
| ConstMatrix, Matrix | Swap | Swap two elements of the matrix |
| ConstMatrix, Matrix | SwapRows | Swap two rows |
| ConstMatrix, Matrix | SwapCols | Swap two columns |
| ConstMatrix, Matrix | PermuteRows | Permute rows |
| ConstMatrix, Matrix | PermuteCols | Permute columns |
| ConstMatrix, Matrix | Row | Returns a copy of the ith row as a *Vector* |
| ConstMatrix, Matrix | Col | Returns a copy of the jth column a *Vector* |
| ConstMatrix, Matrix | T | Returns a transposed matrix |
| ConstMatrix, Matrix | Tip | Transpose in-place |
| ConstMatrix, Matrix | AsVector | Convert matrix to a vector of type *Vector* |
| ConstMatrix, Matrix | Iterator | Returns an iterator |
| ConstMatrix, Matrix | CloneMatrix | Return a deep copy of the matrix as *Matrix* |
| ConstMatrix, Matrix, MagicMatrix | MagicAt | Returns the scalar at the given position as *MagicScalar* |
| ConstMatrix, Matrix, MagicMatrix | MagicSlice | Resutns a slice as a magic matrix (*MagicMatrix*) |
| ConstMatrix, Matrix, MagicMatrix | MagicT | Returns a transposed matrix of type *MagicMatrix* |
| ConstMatrix, Matrix, MagicMatrix | AppendMagicScalar | Append a single magic scalar |
| ConstMatrix, Matrix, MagicMatrix | AppendMagicMatrix | Append a magic matrix |
| ConstMatrix, Matrix, MagicMatrix | CloneMagicMatrix | Return a deep copy of the matrix as *MagicMatrix* |Matrices support the following linear algebra operations:
| Function | Description |
| -------- | -------------------------------- |
| MaddM | Element-wise addition |
| MsubM | Element-wise substraction |
| MmulM | Element-wise multiplication |
| MdivM | Element-wise division |
| MaddS | Addition of a scalar |
| MsubS | Substraction of a scalar |
| MmulS | Multiplication with a scalar |
| MdivS | Division by a scalar |
| MdotM | Matrix product |
| Outer | Outer product |Methods, such as *VaddV* and *MaddM*, are generic and accept vector or matrix types that implement the respective *ConstVector* or *ConstMatrix* interface. However, opertions on interface types are much slower than on concrete types, which is why most vector and matrix types in *autodiff* also implement methods that operate on concrete types. For instance, *DenseFloat64Vector* implements a method called *VADDV* that takes as arguments two objects of type *DenseFloat64Vector*. Methods that operate on concrete types are always named in capital letters.
## Algorithms
The algorithms package contains more complex linear algebra and optimization routines:
| Package | Description |
| ------------------- | ------------------------------------------------------- |
| Adam | Adam stochastic gradient method |
| bfgs | Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm |
| blahut | Blahut algorithm (channel capacity) |
| cholesky | Cholesky and LDL factorization |
| determinant | Matrix determinants |
| eigensystem | Compute Eigenvalues and Eigenvectors |
| gaussJordan | Gauss-Jordan algorithm |
| gradientDescent | Vanilla gradient desent algorithm |
| gramSchmidt | Gram-Schmidt algorithm |
| hessenbergReduction | Matrix Hessenberg reduction |
| lineSearch | Line-search (satisfying the Wolfe conditions) |
| matrixInverse | Matrix inverse |
| msqrt | Matrix square root |
| msqrtInv | Inverse matrix square root |
| newton | Newton's method (root finding and optimization) |
| qrAlgorithm | QR-Algorithm for computing Schur decompositions |
| rprop | Resilient backpropagation |
| svd | Singular Value Decomposition (SVD) |
| saga | SAGA stochastic average gradient descent method |## Basic usage
Import the autodiff library with
```go
import . "github.com/pbenner/autodiff"
```
A scalar holding the value *1.0* can be defined in several ways, i.e.
```go
a := NullScalar(Real64Type)
a.SetFloat64(1.0)
b := NewReal64(1.0)
c := NewFloat64(1.0)
```
*a* and *b* are both *MagicScalar*s, however *a* has type *Scalar* whereas *b* has type **Real64* which implements the *Scalar* interface. Variable *c* is of type *Float64* which cannot carry any derivatives. Basic operations such as additions are defined on all Scalars, i.e.
```go
a.Add(a, b)
```
which stores the result of adding *a* and *b* in *a*. The *ConstFloat64* type allows to define float64 constants without allocation of additional memory. For instance
```go
a.Add(a, ConstFloat64(1.0))
```
adds a constant value to *a* where a type cast is used to define the constant *1.0*.To differentiate a function *f(x,y) = x y^3 + 4*, we define
```go
f := func(x, y ConstScalar) MagicScalar {
// compute f(x,y) = x*y^3 + 4
z := NewReal64()
z.Pow(y, ConstFloat64(3.0))
z.Mul(z, x)
z.Add(z, ConstFloat64(4.0))
return z
}
```
that accepts as arguments two *ConstScalar* variables and returns a *MagicScalar*. We first define two *MagicReal* variables
```go
x := NewReal64(2)
y := NewReal64(4)
```
that store the value at which the derivatives should be evaluated. Afterwards, *x* and *y* must be activated with
```go
Variables(2, x, y)
```
where the first argument sets the order of the derivatives. *Variables()* should only be called once, as it allocates memory for the given magic variables. In this case, derivatives up to second order are computed. After evaluating *f*, i.e.
```go
z := f(x, y)
```
the function value at *(x,y) = (2, 4)* can be retrieved with *z.GetFloat64()*. The first and second partial derivatives can be accessed with *z.GetDerivative(i)* and *z.GetHessian(i, j)*, where the arguments specify the index of the variable. For instance, the derivative of *f* with respect to *x* is returned by *z.GetDerivative(0)*, whereas the derivative with respect to *y* by *z.GetDerivative(1)*.## Basic linear algebra
Vectors and matrices can be created with
```go
v := NewDenseFloat64Vector([]float64{1,2})
m := NewDenseFloat64Matrix([]float64{1,2,3,4}, 2, 2)v_ := NewDenseReal64Vector([]float64{1,2})
m_ := NewDenseReal64Matrix([]float64{1,2,3,4}, 2, 2)
```
where *v* has length 2 and *m* is a 2x2 matrix. With
```go
v := NullDenseFloat64Vector(2)
m := NullDenseFloat64Matrix(2, 2)
```
all values are initially set to zero. Vector and matrix elements can be accessed with the *At*, *MagicAt* or *ConstAt* methods, which return a reference to the scalar implementing either a *Scalar*, *MagicScalar* or *ConstScalar*, i.e.
```go
m.At(1,1).Add(v.ConstAt(0), v.ConstAt(1))
```
adds the first two values in *v* and stores the result in the lower right element of the matrix *m*. Autodiff supports basic linear algebra operations, for instance, the vector matrix product can be computed with
```go
w := NullDenseFloat64Vector(2)
w.MdotV(m, v)
```
where the result is stored in w. Other operations, such as computing the eigenvalues and eigenvectors of a matrix, require importing the respective package from the algorithm library, i.e.
```go
import "github.com/pbenner/autodiff/algorithm/eigensystem"lambda, _, _ := eigensystem.Run(m)
```## Examples
### Gradient descent
Compare vanilla gradient descent with resilient backpropagation
```go
import . "github.com/pbenner/autodiff"
import "github.com/pbenner/autodiff/algorithm/gradientDescent"
import "github.com/pbenner/autodiff/algorithm/rprop"f := func(x_ ConstVector) MagicScalar {
x := x_.ConstAt(0)
// x^4 - 3x^3 + 2
r := NewReal64()
s := NewReal64()
r.Pow(x.ConstAt(0), ConstFloat64(4.0)
s.Mul(ConstFloat64(3.0), s.Pow(x, ConstFloat64(3.0)))
r.Add(ConstFloat64(2.0), r.Add(r, s))
return r
}
x0 := NewDenseFloat64Vector([]float64{8})
// vanilla gradient descent
xn1, _ := gradientDescent.Run(f, x0, 0.0001, gradientDescent.Epsilon{1e-8})
// resilient backpropagation
xn2, _ := rprop.Run(f, x0, 0.0001, 0.4, rprop.Epsilon{1e-8})
```
![Gradient descent](demo/example1/example1.png)### Matrix inversion
Compute the inverse *r* of a matrix *m* by minimizing the Frobenius norm *||mb - I||*
```go
import . "github.com/pbenner/autodiff"
import "github.com/pbenner/autodiff/algorithm/rprop"// define matrix r
m := NewDenseFloat64Matrix([]float64{1,2,3,4}, 2, 2)
// create identity matrix I
I := NullDenseFloat64Matrix(2, 2)
I.SetIdentity()// magic variables for computing the Frobenius norm and its derivative
t := NewDenseReal64Matrix(2, 2)
s := NewReal64()
// objective function
f := func(x ConstVector) MagicScalar {
t.Set(x)
s.Mnorm(t.MsubM(t.MmulM(m, t), I))
return s
}
r, _ := rprop.Run(f, r.GetValues(), 0.01, 0.1, rprop.Epsilon{1e-12})
```### Newton's method
Find the root of a function *f* with initial value *x0 = (1,1)*
```go
import . "github.com/pbenner/autodiff"
import "github.com/pbenner/autodiff/algorithm/newton"t := NullReal64()
f := func(x ConstVector) MagicVector {
x1 := x.ConstAt(0)
x2 := x.ConstAt(1)
y := NullDenseReal64Vector(2)
y1 := y.At(0)
y2 := y.At(1)
// y1 = x1^2 + x2^2 - 6
t .Pow(x1, ConstFloat64(2.0))
y1.Add(y1, t)
t .Pow(x2, ConstFloat64(2.0))
y1.Add(y1, t)
y1.Sub(y1, ConstFloat64(6.0))
// y2 = x1^3 - x2^2
t .Pow(x1, ConstFloat64(3.0))
y2.Add(y2, t)
t .Pow(x2, ConstFloat64(2.0))
y2.Sub(y2, t)return y
}x0 := NewDenseFloat64Vector([]float64{1,1})
xn, _ := newton.RunRoot(f, x0, newton.Epsilon{1e-8})
```### Minimize Rosenbrock's function
Compare Adam, Newton's method, BFGS and Rprop for minimizing Rosenbrock's function```go
import "fmt"import . "github.com/pbenner/autodiff"
import "github.com/pbenner/autodiff/algorithm/adam"
import "github.com/pbenner/autodiff/algorithm/rprop"
import "github.com/pbenner/autodiff/algorithm/bfgs"
import "github.com/pbenner/autodiff/algorithm/newton"f := func(x ConstVector) (MagicScalar, error) {
// f(x1, x2) = (a - x1)^2 + b(x2 - x1^2)^2
// a = 1
// b = 100
// minimum: (x1,x2) = (a, a^2)
a := ConstFloat64( 1.0)
b := ConstFloat64(100.0)
c := ConstFloat64( 2.0)
s := NullReal64()
t := NullReal64()
s.Pow(s.Sub(a, x.ConstAt(0)), c)
t.Mul(b, t.Pow(t.Sub(x.ConstAt(1), t.Mul(x.ConstAt(0), x.ConstAt(0))), c))
s.Add(s, t)
return s, nil
}
hook_adam := func(x, gradient ConstVector, hessian ConstMatrix, y ConstScalar) bool {
fmt.Println("x :", x)
fmt.Println("gradient:", gradient)
fmt.Println("y :", y)
fmt.Println()
return false
}
hook_rprop := func(gradient, step []float64, x ConstVector, y ConstScalar) bool {
fmt.Println("x :", x)
fmt.Println("gradient:", gradient)
fmt.Println("y :", y)
fmt.Println()
return false
}
hook_bfgs := func(x, gradient ConstVector, y ConstScalar) bool {
fmt.Println("x :", x)
fmt.Println("gradient:", gradient)
fmt.Println("y :", y)
fmt.Println()
return false
}
hook_newton := func(x, gradient ConstVector, hessian ConstMatrix, y ConstScalar) bool {
fmt.Println("x :", x)
fmt.Println("gradient:", gradient)
fmt.Println("y :", y)
fmt.Println()
return false
}x0 := NewDenseFloat64Vector([]float64{-0.5, 2})
adam.Run(f, x0,
adam.StepSize{0.1},
adam.Hook{hook_adam},
adam.Epsilon{1e-10})rprop.Run(f, x0, 0.05, []float64{1.2, 0.8},
rprop.Hook{hook_rprop},
rprop.Epsilon{1e-10})bfgs.Run(f, x0,
bfgs.Hook{hook_bfgs},
bfgs.Epsilon{1e-10})newton.RunMin(f, x0,
newton.HookMin{hook_newton},
newton.Epsilon{1e-8},
newton.HessianModification{"LDL"})
```
![Gradient descent](demo/rosenbrock/rosenbrock.png)### Constrained optimization
Maximize the function *f(x, y) = x + y* subject to *x^2 + y^2 = 1* by finding the critical point of the corresponding Lagrangian
```go
import . "github.com/pbenner/autodiff"
import "github.com/pbenner/autodiff/algorithm/newton"z := NullReal64()
t := NullReal64()
// define the Lagrangian
f := func(x_ ConstVector) (MagicScalar, error) {
// z = x + y + lambda(x^2 + y^2 - 1)
x := x_.ConstAt(0)
y := x_.ConstAt(1)
lambda := x_.ConstAt(2)
z.Reset()
t.Pow(x, ConstFloat64(2.0))
z.Add(z, t)
t.Pow(y, ConstFloat64(2.0))
z.Add(z, t)
z.Sub(z, ConstFloat64(1.0))
z.Mul(z, lambda)
z.Add(z, y)
z.Add(z, x)return z, nil
}
// initial value
x0 := NewDenseFloat64Vector([]float64{3, 5, 1})
// run Newton's method
xn, _ := newton.RunCrit(
f, x0,
newton.Epsilon{1e-8})
```