https://github.com/pearu/functional_algorithms
Functional algorithms - definitions and implementations
https://github.com/pearu/functional_algorithms
Last synced: 7 months ago
JSON representation
Functional algorithms - definitions and implementations
- Host: GitHub
- URL: https://github.com/pearu/functional_algorithms
- Owner: pearu
- License: bsd-3-clause
- Created: 2024-05-13T17:28:31.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-05-20T10:52:51.000Z (over 1 year ago)
- Last Synced: 2024-05-20T19:23:34.826Z (over 1 year ago)
- Language: Python
- Size: 114 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
[](https://github.com/pearu/functional_algorithms/actions/workflows/python-package.yml) [](https://anaconda.org/conda-forge/functional_algorithms)
# Functional algorithms
Implementing a math function in a software is a non-trival task when
requiring that the function must return correct (or very close to
correct) results for all possible inputs including complex infinities,
and extremely small or extremely large values of floating point
numbers. Such algorithms typically use different approximations of the
function depending on the inputs locations in the real line or complex
plane.This project provides a tool for defining functional algorithms for
math functions and generating implementations of the algorithms to
various programming languages and math libraries. The aim is to
provide algorithms that are guaranteed to produce correct values on the
whole complex plane or real line.The motivation for this project raises from the need to implement
sophisticated algorithms for various math libraries that otherwise can
be a tedious and errorprone task when done manually using LISP-like
languages. For instance, the definition of the algorithm for computing
arcus sine for Python or NumPy target has LOC about 45 but for the
StableHLO target the LOC is 186. Implementing arcus sine algorithm for
StableHLO by hand would be very hard.## Supported algorithms
Currently, [the definitions of
algorithms](functional_algorithms/algorithms.py) are provided for the
following math functions:- `acos(z: complex | float)`, using modified [Hull et
al](https://dl.acm.org/doi/10.1145/275323.275324) algorithm for
complex `acos`,
- `acosh(z: complex | float)`, using the relation `acosh(z) = sign(z.imag) * I * acos(z)`,
- `asin(z: complex | float)`, using modified [Hull et
al](https://dl.acm.org/doi/10.1145/275323.275324) algorithm for
complex `asin`,
- `asinh(z: complex | float)`, using the relation `asinh(z) = -I * asin(z * I)`,
- `atan(z: complex | float)`, using the relation `atan(z) = -I * atanh(z * I)`,
- `atanh(z: complex | float)`, using a custom algorithm,
- `exp(z: complex)`, using `exp(z) = exp(z.real) * (cos(z.imag) + I *
sin(z.imag))` with accurate handling of cases when `z.real` is
large, or `z.imag` is zero.
- `hypot(x: float, y: float)` and `absolute(z: complex)`,
- `log(z: complex)` using a custom algorithm that employs Dekker's product and Fast2Sum algorithm,
- `log10(z: complex)` using `log10(z) = log(z) / log(10)`,
- `log2(z: complex)` using `log2(z) = log(z) / log(2)`,
- `log1p(z: complex)` using a custom algorithm that employs Dekker's product and 2Sum algorithm,
- `sqrt(z: complex)` using the relation `sqrt(z) = u + I * z.imag / u / 2
if z.real >= 0 else abs(z.imag) / u / 2 + I * sgn(z.imag) * u` where `u = sqrt((abs(z) + abs(z.real)) / 2)`.
- `square(z: complex | float)` using a custom algorithm.All above algorithms are designed to be accurate upto maximal 3 ULP
difference between computed and reference values.Some algorithms are sensitive to denormal related FPU register
states. For instance, the following algorithms are inaccurate on
specific regions of complex plane when `denormals-are-zeros` bit is
set:- `acos`, `acosh`, `asin`, `asinh`, `atan`, `atanh`, `exp`, `log`,
`log2`, `log10`, `log1p`, `sqrt`, `square`,The following algorithms are inaccurate on specific regions of complex
plane when `flush-to-zero` bit is set:- `log1p`, `sqrt`, `square`.
## Supported targets
Currently, the implementations of supported algorithms are provided
for the following [target libraries and
languages](functional_algorithms/targets/):- [Python](https://www.python.org/), using [math](https://docs.python.org/3/library/math.html) functions on real inputs,
- [NumPy](https://numpy.org/), using numpy functions on real inputs,
- [StableHLO](https://github.com/openxla/stablehlo/), using existing decompositions and operations,
- [XLA Client](https://github.com/openxla/xla/), using existing decompositions and operations,
- C++, using [C++ Standard Library](https://en.cppreference.com/w/cpp/standard_library).The Python and NumPy targets are provided only for debugging and
testing functional algorithms.## Results
See [results](results) for generated implementation of all supported
algorithms for supported targets. Feel free to copy the generated
source codes to your program under the same licensing conditions as
this project.## Testing algorithms and generated implementations
To ensure the correctness as well as accuracy of provided algorithms,
we'll use [MPMath](https://mpmath.org/) as a reference
library of math functions. We assume that mpmath implementations
produce correct results to math functions with arbitrary precision -
this is the prerequisity for ensuring accuracy. To ensure correctness,
we'll verify this assumption for each function case separately to
eliminate the possibility of false-positives due to possible bugs in
MPMath.The algorithms are typically validated with 32 and 64-bit floating
point numbers and their complex compositions using NumPy. The
evaluation of the numpy target implementation is performed on
logarithmic-uniform samples (an
[ULP](https://en.wikipedia.org/wiki/Unit_in_the_last_place)-distance
of neighboring samples is constant) that represent the whole complex
plane or real line including complex infinities, and extremly small
and large values.To characterize the correctness of algorithms, we'll use
[ULP](https://en.wikipedia.org/wiki/Unit_in_the_last_place) to measure
the distance between function result and its reference value.When using over a million samples that are log-uniformly distributed
on a complex plane of real line, the probability that the function
return value is different from a reference value by the given number
of ULPs, is displayed in the following table for the supported
algorithms:| Function | dtype | ULP=0 (exact) | ULP=1 | ULP=2 | ULP=3 | ULP>3 | errors |
| -------- | ----- | ------------- | ----- | ----- | ----- | ----- | --------- |
| absolute | float32 | 100.000 % | - | - | - | - | - |
| absolute | complex64 | 96.590 % | 3.360 % | 0.050 % | - | - | - |
| asin | float32 | 97.712 % | 2.193 % | 0.093 % | 0.002 % | - | - |
| asin | complex64 | 79.382 % | 20.368 % | 0.244 % | 0.006 % | - | - |
| asinh | float32 | 92.279% | 7.714 % | 0.006 % | - | - | - |
| asinh | complex64 | 76.625 % | 23.350 % | 0.024 % | - | - | - |
| square | float32 | 100.000 % | - | - | - | - | - |
| square | complex64 | 99.578 % | 0.422 % | - | - | - | - |See a complete table of [ULP differences for all provided
algoritms](results/README.md).## A case study: square
A naive implementation of the square function can be defined as
```python
def square(z):
return z * z
```which produces correct results on the real line, however, in the case
of complex inputs, there exists regions in complex plane where the
given algorithm of using a plain complex multiplication produces
incorrect values. For example:
```python
>>> def square(z):
... return z * z
...
>>> z = complex(1e170, 1e170)
>>> square(z)
(nan+infj)
```
where the imaginary part being `inf` is expected due to overflow from
`1e170 * 1e170` but the real part ought to be zero but here the `nan`
real part originates from the following computation of `1e170 *
1e170 - 1e170 * 1e170 -> inf - inf -> nan`.Btw, we cannot rely on NumPy square function as a reference because it
produces incorrect value as well (likely in a platform-dependent way):
```python
>>> numpy.square(z)
(-inf+infj)
```In this project, the square function uses the following algorithm:
```python
def square(ctx, z):
if z.is_complex:
real = ctx.select(abs(z.real) == abs(z.imag), 0, (z.real - z.imag) * (z.real + z.imag))
imag = 2 * (z.real * z.imag)
return ctx.complex(real, imag)
return z * z
```
from which implementations for different libraries and programming
languages can be generated. For example, to generate a square function
for Python, we'll use
```python
>>> import functional_algorithms as fa
>>> ctx = fa.Context()
>>> square_graph = ctx.trace(square, complex)
>>> py_square = fa.targets.python.as_function(square_graph)
>>> py_square(z)
infj
```
In general, `py_square` produces correct results on the whole complex
plane.### Digging into details
Let us look into some of the details of the above example. First,
`square_graph` is an `Expr` instance that represents the traced
function using a pure functional form:
```python
>>> print(square_graph)
(def square, (z: complex),
(complex
(select
(eq
(abs (real z)),
(abs (imag z))),
(constant 0, (real z)),
(multiply
(subtract
(real z),
(imag z)),
(add
(real z),
(imag z)))),
(multiply
(constant 2, (real z)),
(multiply
(real z),
(imag z)))))
```The module object `fa.targets.python` defines the so-called Python target
implementation. There exists other targets such as `fa.targets.numpy`,
`fa.targets.stablehlo`, etc.To visualize the implementation for the given target, say,
`fa.targets.python`, we'll use `tostring()` method:
```python
>>> print(square_graph.tostring(fa.targets.python))
def square(z: complex) -> complex:
real_z: float = (z).real
imag_z: float = (z).imag
return complex(
(0) if ((abs(real_z)) == (abs(imag_z))) else (((real_z) - (imag_z)) * ((real_z) + (imag_z))),
(2) * ((real_z) * (imag_z)),
)
```
which is actually the definition of the Python function used above
when evaluating `py_square(z)`.Similarly, we can generate implementations for other targets, for instance:
```python
>>> print(square_graph.tostring(fa.targets.stablehlo))
def : Pat<(CHLO_Square ComplexElementType:$z),
(StableHLO_ComplexOp
(StableHLO_SelectOp
(StableHLO_CompareOp
(StableHLO_AbsOp
(StableHLO_RealOp:$real_z $z)),
(StableHLO_AbsOp
(StableHLO_ImagOp:$imag_z $z)),
StableHLO_ComparisonDirectionValue<"EQ">,
(STABLEHLO_DEFAULT_COMPARISON_TYPE)),
(StableHLO_ConstantLike<"0"> $real_z),
(StableHLO_MulOp
(StableHLO_SubtractOp $real_z, $imag_z),
(StableHLO_AddOp $real_z, $imag_z))),
(StableHLO_MulOp
(StableHLO_ConstantLike<"2"> $real_z),
(StableHLO_MulOp $real_z, $imag_z)))>;
```In the case of the NumPy target, the arguments types must include
bit-width information:
```python
>>> np_square_graph = ctx.trace(square, numpy.complex64)
>>> print(np_square_graph.tostring(fa.targets.numpy))
def square(z: numpy.complex64) -> numpy.complex64:
with warnings.catch_warnings(action="ignore"):
z = numpy.complex64(z)
real_z: numpy.float32 = (z).real
imag_z: numpy.float32 = (z).imag
result = make_complex(
(
(numpy.float32(0))
if (numpy.equal(numpy.abs(real_z), numpy.abs(imag_z), dtype=numpy.bool_))
else (((real_z) - (imag_z)) * ((real_z) + (imag_z)))
),
(numpy.float32(2)) * ((real_z) * (imag_z)),
)
return result>>> fa.targets.numpy.as_function(np_square_graph)(z)
infj
```## Useful tips
### Debugging NumPy target implementations
A useful feature in the `tostring` method is the `debug`
kw-argument. When it is greater than 0, type checking statements are
inserted into the function implementation:
```python
>>> print(np_square_graph.tostring(fa.targets.numpy, debug=1))
def square(z: numpy.complex64) -> numpy.complex64:
with warnings.catch_warnings(action="ignore"):
z = numpy.complex64(z)
real_z: numpy.float32 = (z).real
assert real_z.dtype == numpy.float32, (real_z.dtype, numpy.float32)
imag_z: numpy.float32 = (z).imag
assert imag_z.dtype == numpy.float32, (imag_z.dtype, numpy.float32)
result = make_complex(
(
(numpy.float32(0))
if (numpy.equal(numpy.abs(real_z), numpy.abs(imag_z), dtype=numpy.bool_))
else (((real_z) - (imag_z)) * ((real_z) + (imag_z)))
),
(numpy.float32(2)) * ((real_z) * (imag_z)),
)
assert result.dtype == numpy.complex64, (result.dtype,)
return result
```When `debug=2`, the function implementation source code and the values
of all variables are printed out when calling the function:
```python
>>> fa.targets.numpy.as_function(np_square_graph, debug=2)(3 + 4j)
def square(z: numpy.complex64) -> numpy.complex64:
with warnings.catch_warnings(action="ignore"):
z = numpy.complex64(z)
print("z=", z)
real_z: numpy.float32 = (z).real
print("real_z=", real_z)
assert real_z.dtype == numpy.float32, (real_z.dtype, numpy.float32)
imag_z: numpy.float32 = (z).imag
print("imag_z=", imag_z)
assert imag_z.dtype == numpy.float32, (imag_z.dtype, numpy.float32)
result = make_complex(
(
(numpy.float32(0))
if (numpy.equal(numpy.abs(real_z), numpy.abs(imag_z), dtype=numpy.bool_))
else (((real_z) - (imag_z)) * ((real_z) + (imag_z)))
),
(numpy.float32(2)) * ((real_z) * (imag_z)),
)
print("result=", result)
assert result.dtype == numpy.complex64, (result.dtype,)
return resultz= (3+4j)
real_z= 3.0
imag_z= 4.0
result= (-7+24j)
(-7+24j)
```### Intermediate variables in Python and NumPy target implementations
When generating implementations, one can control the naming of
intermediate variables as well as their appearance. By default,
intermediate variables are generated only for expressions that are
used multiple times as subexpressions. However, one can also force the
creation of intermediate variables for better visualization of the
implementations. For that, we'll redefine the square algorithm as follows:
```python
def square(ctx, z):
if z.is_complex:
x = abs(z.real)
y = abs(z.imag)
real = ctx.select(x == y, 0, ((x - y) * (y + y)).reference("real_part"))
imag = 2 * (x * y)
r = ctx.complex(real.reference(), imag.reference())
return ctx(r)
return z * z
```
Notice the usage of `reference` method that forces the expression to
be defined as a variable. Also, notice wrapping the return value with
`ctx(...)` call that will assing variable names in the function as
reference values of expressions.The generated implementation for the Python targer of the above definition is
```python
>>> square_graph = ctx.trace(square, complex)
>>> print(square_graph.tostring(fa.targets.python))
def square(z: complex) -> complex:
real_z: float = (z).real
x: float = abs(real_z)
y: float = abs((z).imag)
real_part: float = ((x) - (y)) * ((y) + (y))
real: float = (0) if ((x) == (y)) else (real_part)
imag: float = (2) * ((x) * (y))
return complex(real, imag)
```
which is more expressive than the one shown above.