Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/pedrosan/CausalModeling


https://github.com/pedrosan/CausalModeling

Last synced: 20 days ago
JSON representation

Awesome Lists containing this project

README

        

## Causality Modeling Resources

You can use the [editor on GitHub](https://github.com/pedrosan/CausalModeling/edit/master/README.md) to maintain and preview the content for your website in Markdown files.

## MXM

- [main page](http://mensxmachina.org/en/)
- [R package](https://cran.r-project.org/web/packages/MXM/index.html)
- [Tsamardinos academic page](http://www2.ics.forth.gr/bil/index_main.php?l=e&c=535)


## Lectures

### Courses

- Coursera "Probabilistic Graphical Models" (Koller)
- [1. Representation](https://www.coursera.org/learn/probabilistic-graphical-models/)
- [2. Inference](https://www.coursera.org/learn/probabilistic-graphical-models-2-inference)
- [3. Learning](https://www.coursera.org/learn/probabilistic-graphical-models-3-learning)
- [Univ. of Pittsburgh CCD _Short Summer Course (2016)_](http://www.ccd.pitt.edu/2016-short-course-datathon/)
- [Videos (on YouTube)](https://youtu.be/9yEYZURoE3Y)
- [Additional material on hackpad](https://hackpad.com/2016-Causal-Discovery-Course-RSf6boNbJVH)
- Tetrad 5.3.0 JNLP version [[download](http://www.phil.cmu.edu/tetrad/jnlp/tetrad.jnlp.5.3.0.jnlp)]
- Tetrad 5.3.0 jar file [[download](http://www.phil.cmu.edu/projects/tetrad_download/maven/edu/cmu/tetrad-gui/5.3.0-SNAPSHOT/tetrad-gui-5.3.0-20160607.191423-7-launch.jar)]
- datasets [[download](http://www.phil.cmu.edu/projects/tetrad_download/download/workshops/CCD/2016/Datasets/)]
- [Univ. of Pittsburgh CCD _Short Summer Course (2015)_](http://www.ccd.pitt.edu/training/summer-short-course-2015/)
- Tetrad 5.2.1.0 [[download](http://www.phil.cmu.edu/projects/tetrad_download/download/tetrad-5.2.1-0.jar)]
- [CMU Causal and Statistical Reasoning](http://oli.cmu.edu/courses/future/causal-statistical-reasoning/)
- [NIPS 2013 Workshop on Causality](http://clopinet.com/isabelle/Projects/NIPS2013/)


### Videos

- [PGM Koller videos playlist](https://www.youtube.com/playlist?list=PL50E6E80E8525B59C)

### Lectures Notes

- [Stanford CS228 Lecture Notes](https://ermongroup.github.io/cs228-notes/)
- [Introduction](https://ermongroup.github.io/cs228-notes/preliminaries/introduction/)
- [Bayesian Networks](https://ermongroup.github.io/cs228-notes/representation/directed/)
- [NYU Sontag PGM course](http://cs.nyu.edu/~dsontag/courses/pgm13/)
- [Elwert _Causal Inference with DAGs_](http://www.ssc.wisc.edu/~felwert/causality/?page_id=66)
- [UC Biostat, _"Introduction to Causal Inference"_](http://www.ucbbiostat.com/lectures)
- [Readings](http://www.ucbbiostat.com/readings)


## Reading Material

- [Judea Pearl home](http://bayes.cs.ucla.edu/home.htm)
- ["Causality" book page](http://bayes.cs.ucla.edu/BOOK-2K/)
- [DAG (wikipedia)](https://en.wikipedia.org/wiki/Directed_acyclic_graph)
- [UCLA Department of Statistics publications (eScholarship)](https://escholarship.org/uc/uclastat_papers)
- [Uncertainty in Artificial Intelligence (Decision Science Labs @UPitt)](https://dslpitt.org/uai/home.jsp?mmnu=0&smnu=0)

### Blogs

- [Adam Kelleher blog series](https://medium.com/@akelleh/causal-data-science-721ed63a4027)
- [StitchFix: _Making Causal Impact Analysis Easy_](http://multithreaded.stitchfix.com/blog/2016/01/13/market-watch/)
- [Thomas Huijskens: _The fundamental problem of causal analysis_](https://thuijskens.github.io/2016/08/25/causal-modelling/)
- [Yanir Seroussi: _Why you should stop worrying about deep learning and deepen your understanding of causality instead_](https://yanirseroussi.com/2016/02/14/why-you-should-stop-worrying-about-deep-learning-and-deepen-your-understanding-of-causality-instead/)
- [_Probabilistic Graphical Models: Bayesian Networks Example With R, Python, SAMIAM_](http://plus8888.blogspot.com/2016/12/probabilistic-graphical-models-bayesian.html)

### Books

- Pearl: _"Causality"_ / [@UCLA](http://bayes.cs.ucla.edu/BOOK-2K/) / [@Amazon](https://www.amazon.com/dp/052189560X/)
- Koller & Friedman: _"Probabilistic Graphical Models"_ / [@MIT Press](https://mitpress.mit.edu/books/probabilistic-graphical-models) / [@Amazon](https://www.amazon.com/Probabilistic-Graphical-Models-Principles-Computation/dp/0262013193)
- Shalizi: _"Advanced Data Analysis from an Elementary Point of View"_ / [@CMU](http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/)
- van der Laan & Rose: _"Targeted Learning: Causal Inference for Observational and Experimental Data"_ / [website](http://www.targetedlearningbook.com/) / [@Amazon](https://www.amazon.com/Targeted-Learning-Observational-Experimental-Statistics/dp/1441997814) / [@Springer](http://www.springer.com/us/book/9781441997814)


## Research Groups

- [Probabilistic Graphical Models @Stanford](http://pgm.stanford.edu/)
- [Vanderbilt Discovery Systems Laboratory](http://www.dsl-lab.org/)
- [Peter Spirtes (@CMU Philosophy)](http://www.cmu.edu/dietrich/philosophy/people/faculty/spirtes.html)
- [University of Pittsburgh Center for Causal Discovery (CCD)](http://www.ccd.pitt.edu/data-science/)
- [James Robins (@Harvard SPH)](https://www.hsph.harvard.edu/james-robins/)
- [Tyler Vanderweele (@Harvard SPH)](https://www.hsph.harvard.edu/tyler-vanderweele/)
- [Jin Tian (@IAState CS)](http://web.cs.iastate.edu/~jtian/) ([`BNLearner` s/w](http://web.cs.iastate.edu/~jtian/Software/BNLearner/BNLearner.htm) )
- [Sander Greenland (@UCLA)](http://ph.ucla.edu/faculty/greenland)
- [Ilya Shpitser (@JHU CS)](https://www.cs.jhu.edu/faculty/ilya-shpitser-3/)
- [Project X Research - Direct Graphical Models](http://research.project-10.de/dgm/)
- [ETHZ causality resources](http://www.causality.inf.ethz.ch/resources.php)
- [Cosma Shalizi (@CMU Stats)](http://www.stat.cmu.edu/~cshalizi/)


## Software

- `bnlearn` R package: [bnlearn](http://www.bnlearn.com/) ([@CRAN](https://cran.r-project.org/web/packages/bnlearn/index.html))
- Adam Kelleher `causality` python package: [pypi](https://pypi.python.org/pypi/causality/0.0.3) and [GitHub](https://github.com/akelleh/causality)
- [Google's `CausalImpact` R package](https://google.github.io/CausalImpact/CausalImpact.html) / [on GitHub](https://google.github.io/CausalImpact/)
- [TETRAD](http://www.phil.cmu.edu/tetrad/) / [on GitHub](https://github.com/cmu-phil/tetrad)
- [University of Pittsburgh Center for Causal Discovery (CCD)](http://www.ccd.pitt.edu/data-science/)
- [CCD software documentation](https://bd2kccd.github.io/docs/)
- [ETHZ causality resources](http://www.causality.inf.ethz.ch/resources.php)
- Other python packages:
- `pycausal`: [pypi](https://pypi.python.org/pypi/pycausal/) and [GitHub](https://github.com/triptoes1/pycausal/)
- `causalmodels`: [pypi](https://pypi.python.org/pypi/causalmodels/) and [GitHub](https://github.com/roronya/causalmodels)
- `pgmpy`: [web page](http://pgmpy.org/index.html)
- [UnBBayes (open source s/w for modeling, learning and reasoning upon probabilistic networks](http://unbbayes.sourceforge.net/)
- [SamIam (@UCLA)](http://reasoning.cs.ucla.edu/samiam/)
- [`BNLearner`](http://web.cs.iastate.edu/~jtian/Software/BNLearner/BNLearner.htm)
- [BDGAL, Bayesian DAG Learning](http://www.cs.ubc.ca/~murphyk/Software/BDAGL/)
- [`DAGitty`: A Graphical Tool for Analyzing Causal Diagrams](http://dagitty.net/)
- [online browser based version](http://dagitty.net/dags.html)
- [LOCAL version](file://chnas02/DSaT/Decision%20Sciences%20Team/Data%20Scientists/Projects/CausalModeling/software/DAGitty/dags.html)


## About Markdown

Markdown is a lightweight and easy-to-use syntax for styling your writing.

For more details see [GitHub Flavored Markdown](https://guides.github.com/features/mastering-markdown/).