https://github.com/pegah-ardehkhani/reinforcement-learning-algorithms-from-scratch
Explore key RL algorithms with detailed explanations and fully commented Python code implementations
https://github.com/pegah-ardehkhani/reinforcement-learning-algorithms-from-scratch
reinforcement-learning reinforcement-learning-agent reinforcement-learning-algorithms reinforcement-learning-environments rl
Last synced: 6 months ago
JSON representation
Explore key RL algorithms with detailed explanations and fully commented Python code implementations
- Host: GitHub
- URL: https://github.com/pegah-ardehkhani/reinforcement-learning-algorithms-from-scratch
- Owner: Pegah-Ardehkhani
- License: mit
- Created: 2024-10-15T20:11:07.000Z (12 months ago)
- Default Branch: main
- Last Pushed: 2024-10-19T12:09:00.000Z (12 months ago)
- Last Synced: 2024-10-19T12:30:09.573Z (12 months ago)
- Topics: reinforcement-learning, reinforcement-learning-agent, reinforcement-learning-algorithms, reinforcement-learning-environments, rl
- Language: Jupyter Notebook
- Homepage:
- Size: 2.04 MB
- Stars: 3
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Reinforcement Learning Algorithms from Scratch 
![]()
## Table of content ✍️
**01. Epsilon Greedy**
**02. Optimistic Initial Values**
**03. UCB1**
**04. Bayesian Bandit Thompson Sampling**
**05. Iterative Policy Evaluation**
**06. Policy Iteration**
**07. Value Iteration**
**08. TD(0)**
**09. TD(λ)**
**10. SARSA**
**11. SARSA(λ)**
**12. Q-Learning**
**13. Deep Q-Learning**