Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/pelson/ecmwf-vis-2015
Presentation at the ECMWF's visualisation in meteorology week (http://www.ecmwf.int/en/learning/workshops-and-seminars/visualisation-meteorology-week-2015)
https://github.com/pelson/ecmwf-vis-2015
Last synced: 2 days ago
JSON representation
Presentation at the ECMWF's visualisation in meteorology week (http://www.ecmwf.int/en/learning/workshops-and-seminars/visualisation-meteorology-week-2015)
- Host: GitHub
- URL: https://github.com/pelson/ecmwf-vis-2015
- Owner: pelson
- Created: 2015-09-29T15:51:54.000Z (over 9 years ago)
- Default Branch: master
- Last Pushed: 2015-09-30T08:27:57.000Z (over 9 years ago)
- Last Synced: 2024-12-04T17:24:17.307Z (2 months ago)
- Size: 12.7 MB
- Stars: 2
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Iris: A python package for the analysis and visualisation of Meteorological data
Presented at the [Visualisation in Meteorology week 2015](http://www.ecmwf.int/en/learning/workshops-and-seminars/visualisation-meteorology-week-2015) on 30th Sept 2015.
## Links within the presentation
* [Iris documentation](http://scitools.org.uk/iris/docs/latest/)
* [Cartopy gallery](http://scitools.org.uk/cartopy/docs/latest)
* [CF Metadata conventions](http://cfconventions.org/)
* [Hewson, T.D. & H.A. Titley, 2010: Objective identification, typing and tracking of the complete life-cycles of cyclonic features at high spatial resolution. Meteorol. Appl., 17, 355-381.](http://onlinelibrary.wiley.com/doi/10.1002/met.204/abstract)
* [Camp, J., Roberts, M., MacLachlan, C., Wallace, E., Hermanson, L., Brookshaw, A., Arribas, A., Scaife, A. A., Mar. 2015. Seasonal forecasting of tropical storms using the Met Office GloSea5 seasonal forecast system. Quarterly Journal of the Royal Meteorological Society](http://onlinelibrary.wiley.com/doi/10.1002/qj.2516/abstract)
* [scikit-learn example of land classification from satellite imagery](http://rexdouglass.com/quick-and-dirty-land-cover-estimates-from-landsat-satellite-imagery-and-openstreetmap/)
* [Biggus](https://github.com/SciTools/biggus)
* [miniconda](http://conda.pydata.org/miniconda.html)
* [Twitter: @pypelson](https://twitter.com/pypelson)