Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/perminder-klair/resume-parser
A Simple NodeJs library to parse Resume / CV to JSON.
https://github.com/perminder-klair/resume-parser
cv resume resume-analysis resume-parser
Last synced: 5 days ago
JSON representation
A Simple NodeJs library to parse Resume / CV to JSON.
- Host: GitHub
- URL: https://github.com/perminder-klair/resume-parser
- Owner: perminder-klair
- License: mit
- Created: 2018-01-17T05:38:03.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2022-12-07T09:16:50.000Z (about 2 years ago)
- Last Synced: 2024-12-06T19:37:19.520Z (about 1 month ago)
- Topics: cv, resume, resume-analysis, resume-parser
- Language: JavaScript
- Homepage:
- Size: 303 KB
- Stars: 131
- Watchers: 15
- Forks: 77
- Open Issues: 22
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- project-awesome - perminder-klair/resume-parser - A Simple NodeJs library to parse Resume / CV to JSON. (JavaScript)
README
# Resume Parser
A Simple NodeJs library to parse Resume / CV to JSON.
This library parse through CVs / Resumes in the word (.doc or .docx) / RTF / TXT / PDF / HTML format to extract the necessary information in a predefined JSON format. If the CVs / Resumes contain any social media profile links then the solution should also parse the public social profile web-pages and organize the data in JSON format (e.g. Linkedin public profile, Github, etc.)
## Installation
`npm install resume-parser --save`
## Usage
```
const ResumeParser = require('resume-parser');// From file to file
ResumeParser
.parseResumeFile('./files/resume.doc', './files/compiled') // input file, output dir
.then(file => {
console.log("Yay! " + file);
})
.catch(error => {
console.error(error);
});// From URL
ResumeParser
.parseResumeUrl('http://www.mysite.com/resume.txt') // url
.then(data => {
console.log('Yay! ', data);
})
.catch(error => {
console.error(error);
});
```At this moment application will work fine, but! By default it supports only `.TXT` and `.HTML` text formats. For better performance you should install at least support of `.PDF` (and `.DOC`). Here is instructions, how to do it from [textract README](https://github.com/dbashford/textract#requirements) file:
- `PDF` extraction requires `pdftotext` be installed, [link](http://www.foolabs.com/xpdf/download.html)
- `DOC` extraction requires `catdoc` be installed, [link](http://www.wagner.pp.ru/~vitus/software/catdoc/), unless on OSX in which case textutil (installed by default) is used.
- `DOCX` extraction requires `unzip` be available (e.g. `sudo apt-get install unzip` for Ubuntu)## Extending
All 'action' are by building `src/dictionary.js` file. For now it has only basics rules, but it's very flexible (although a bit complicated) and extensible. Just put your rule according to existing and following main principles and enjoy!
## Contributions
Many thanks to [Alexey Lizurchik](https://github.com/likerRr) for this amazing library.
[https://github.com/likerRr/code4goal-resume-parser](https://github.com/likerRr/code4goal-resume-parser)