Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/petarv-/dgi
Deep Graph Infomax (https://arxiv.org/abs/1809.10341)
https://github.com/petarv-/dgi
deep-graph-infomax graph-convolutional-networks neural-networks python pytorch unsupervised-learning unsupervised-node-embedding
Last synced: 4 days ago
JSON representation
Deep Graph Infomax (https://arxiv.org/abs/1809.10341)
- Host: GitHub
- URL: https://github.com/petarv-/dgi
- Owner: PetarV-
- License: mit
- Created: 2018-12-21T15:06:57.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2022-11-01T16:50:49.000Z (about 2 years ago)
- Last Synced: 2024-07-21T14:33:14.803Z (4 months ago)
- Topics: deep-graph-infomax, graph-convolutional-networks, neural-networks, python, pytorch, unsupervised-learning, unsupervised-node-embedding
- Language: Python
- Size: 136 KB
- Stars: 617
- Watchers: 12
- Forks: 138
- Open Issues: 11
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# DGI
Deep Graph Infomax (Veličković *et al.*, ICLR 2019): [https://arxiv.org/abs/1809.10341](https://arxiv.org/abs/1809.10341)![](https://camo.githubusercontent.com/f62a0b987d8a1a140a9f3ba14baf4caa45dfbcad/68747470733a2f2f7777772e64726f70626f782e636f6d2f732f757a783779677761637a76747031302f646565705f67726170685f696e666f6d61782e706e673f7261773d31)
## Overview
Here we provide an implementation of Deep Graph Infomax (DGI) in PyTorch, along with a minimal execution example (on the Cora dataset). The repository is organised as follows:
- `data/` contains the necessary dataset files for Cora;
- `models/` contains the implementation of the DGI pipeline (`dgi.py`) and our logistic regressor (`logreg.py`);
- `layers/` contains the implementation of a GCN layer (`gcn.py`), the averaging readout (`readout.py`), and the bilinear discriminator (`discriminator.py`);
- `utils/` contains the necessary processing subroutines (`process.py`).Finally, `execute.py` puts all of the above together and may be used to execute a full training run on Cora.
## Reference
If you make advantage of DGI in your research, please cite the following in your manuscript:```
@inproceedings{
velickovic2018deep,
title="{Deep Graph Infomax}",
author={Petar Veli{\v{c}}kovi{\'{c}} and William Fedus and William L. Hamilton and Pietro Li{\`{o}} and Yoshua Bengio and R Devon Hjelm},
booktitle={International Conference on Learning Representations},
year={2019},
url={https://openreview.net/forum?id=rklz9iAcKQ},
}
```## License
MIT