Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/petarv-/dgi

Deep Graph Infomax (https://arxiv.org/abs/1809.10341)
https://github.com/petarv-/dgi

deep-graph-infomax graph-convolutional-networks neural-networks python pytorch unsupervised-learning unsupervised-node-embedding

Last synced: 4 days ago
JSON representation

Deep Graph Infomax (https://arxiv.org/abs/1809.10341)

Awesome Lists containing this project

README

        

# DGI
Deep Graph Infomax (Veličković *et al.*, ICLR 2019): [https://arxiv.org/abs/1809.10341](https://arxiv.org/abs/1809.10341)

![](https://camo.githubusercontent.com/f62a0b987d8a1a140a9f3ba14baf4caa45dfbcad/68747470733a2f2f7777772e64726f70626f782e636f6d2f732f757a783779677761637a76747031302f646565705f67726170685f696e666f6d61782e706e673f7261773d31)

## Overview
Here we provide an implementation of Deep Graph Infomax (DGI) in PyTorch, along with a minimal execution example (on the Cora dataset). The repository is organised as follows:
- `data/` contains the necessary dataset files for Cora;
- `models/` contains the implementation of the DGI pipeline (`dgi.py`) and our logistic regressor (`logreg.py`);
- `layers/` contains the implementation of a GCN layer (`gcn.py`), the averaging readout (`readout.py`), and the bilinear discriminator (`discriminator.py`);
- `utils/` contains the necessary processing subroutines (`process.py`).

Finally, `execute.py` puts all of the above together and may be used to execute a full training run on Cora.

## Reference
If you make advantage of DGI in your research, please cite the following in your manuscript:

```
@inproceedings{
velickovic2018deep,
title="{Deep Graph Infomax}",
author={Petar Veli{\v{c}}kovi{\'{c}} and William Fedus and William L. Hamilton and Pietro Li{\`{o}} and Yoshua Bengio and R Devon Hjelm},
booktitle={International Conference on Learning Representations},
year={2019},
url={https://openreview.net/forum?id=rklz9iAcKQ},
}
```

## License
MIT