Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/peter-tanner/idiots-guide-to-elec4402-communication-systems
lol. lmao even.
https://github.com/peter-tanner/idiots-guide-to-elec4402-communication-systems
Last synced: 2 days ago
JSON representation
lol. lmao even.
- Host: GitHub
- URL: https://github.com/peter-tanner/idiots-guide-to-elec4402-communication-systems
- Owner: peter-tanner
- License: gpl-3.0
- Created: 2024-10-28T20:58:20.000Z (10 days ago)
- Default Branch: master
- Last Pushed: 2024-10-28T22:09:29.000Z (10 days ago)
- Last Synced: 2024-10-28T23:19:17.015Z (10 days ago)
- Size: 1.04 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.html
- License: COPYING.txt
Awesome Lists containing this project
README
Idiot's guide to ELEC4402 communication systems
/* From extension vscode.github */
/*---------------------------------------------------------------------------------------------
* Copyright (c) Microsoft Corporation. All rights reserved.
* Licensed under the MIT License. See License.txt in the project root for license information.
*--------------------------------------------------------------------------------------------*/.vscode-dark img[src$=\#gh-light-mode-only],
.vscode-light img[src$=\#gh-dark-mode-only],
.vscode-high-contrast:not(.vscode-high-contrast-light) img[src$=\#gh-light-mode-only],
.vscode-high-contrast-light img[src$=\#gh-dark-mode-only] {
display: none;
}
body {
font-family: -apple-system, BlinkMacSystemFont, 'Segoe WPC', 'Segoe UI', system-ui, 'Ubuntu', 'Droid Sans', sans-serif;
font-size: 14px;
line-height: 1.6;
}
.task-list-item {
list-style-type: none;
}.task-list-item-checkbox {
margin-left: -20px;
vertical-align: middle;
pointer-events: none;
}:root {
--color-note: #0969da;
--color-tip: #1a7f37;
--color-warning: #9a6700;
--color-severe: #bc4c00;
--color-caution: #d1242f;
--color-important: #8250df;
}@media (prefers-color-scheme: dark) {
:root {
--color-note: #2f81f7;
--color-tip: #3fb950;
--color-warning: #d29922;
--color-severe: #db6d28;
--color-caution: #f85149;
--color-important: #a371f7;
}
}.markdown-alert {
padding: 0.5rem 1rem;
margin-bottom: 16px;
color: inherit;
border-left: .25em solid #888;
}.markdown-alert>:first-child {
margin-top: 0
}.markdown-alert>:last-child {
margin-bottom: 0
}.markdown-alert .markdown-alert-title {
display: flex;
font-weight: 500;
align-items: center;
line-height: 1
}.markdown-alert .markdown-alert-title .octicon {
margin-right: 0.5rem;
display: inline-block;
overflow: visible !important;
vertical-align: text-bottom;
fill: currentColor;
}.markdown-alert.markdown-alert-note {
border-left-color: var(--color-note);
}.markdown-alert.markdown-alert-note .markdown-alert-title {
color: var(--color-note);
}.markdown-alert.markdown-alert-important {
border-left-color: var(--color-important);
}.markdown-alert.markdown-alert-important .markdown-alert-title {
color: var(--color-important);
}.markdown-alert.markdown-alert-warning {
border-left-color: var(--color-warning);
}.markdown-alert.markdown-alert-warning .markdown-alert-title {
color: var(--color-warning);
}.markdown-alert.markdown-alert-tip {
border-left-color: var(--color-tip);
}.markdown-alert.markdown-alert-tip .markdown-alert-title {
color: var(--color-tip);
}.markdown-alert.markdown-alert-caution {
border-left-color: var(--color-caution);
}.markdown-alert.markdown-alert-caution .markdown-alert-title {
color: var(--color-caution);
}
Idiot's guide to ELEC4402 communication systems
This unit allows you to bring infinite physical notes (except books borrowed from the UWA library) to all tests and the final exam. You can't rely on what material they provide in the test/exam, it is very minimal to say the least. Hope this helps.
If you have issues or suggestions, raise them on GitHub. I accept pull requests for fixes or suggestions but the content must not be copyrighted under a non-GPL compatible license.
Download PDF 📄
It is recommended to refer to use the PDF copy instead of whatever GitHub renders.
License and information
Notes are open-source and licensed under the GNU GPL-3.0. You must include the full-text of the license and follow its terms when using these notes or any diagrams in derivative works (but not when printing as notes)
Copyright (C) 2024 Peter Tanner
GPL copyright information
Copyright (C) 2024 Peter TannerThis program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/.Other advice for this unit
Get more exam papers on OneSearch
- You can access up to 6 more papers with this method (You normally only get the previous year's paper on LMS in week 12).
- Either search "Communications" and filter by type "Examination Papers"
- Or search old unit codes
- ELEC4301 Digital Communications and Networking
- ENGT4301 Digital Communications and Networking
- ELEC3302 Communications Systems
- Note that ELEC5501 Advanced Communications is a different unit.
Listing of examination papers on OneSearch
- Communications Systems ELEC3302 Examination paper [2008 Supplementary]
- Communications Systems ELEC4402 Examination paper [2014 Semester 2]
- Communications Systems ELEC3302 Examination paper [2014 Semester 2]
- Communications Systems ELEC3302 Examination paper [2008 Semester 1]
- Digital Communications and Networking ENGT4301 Examination paper [2005 Supplementary]
- Digital Communications and Networking ELEC4301 Examination paper [2009 Supplementary]
Tests
- A lot of the unit requires you to learn processes and apply them. This is quite time consuming to do during the semester and the marking of the tests will destroy your wam if you do not know the process (especially compared to signal processing and signals and systems), I do not recommend doing this unit during thesis year.
- This formula sheet will attempt to condense all processes/formulas you may need in this unit.
You do not get given a formula sheet, so you are entirely dependent on your own notes (except for some exceptions, such as the erf(x)\text{erf}(x)erf(x) table). So bring good notes.- Doing this unit after signal processing is a good idea.
https://www.petertanner.dev/posts/Idiots-guide-to-ELEC4402-Communications-Systems/
Notes are open-source and licensed under the GNU GPL-3.0. Suggest any corrections or changes on GitHub.
Fourier transform identities and properties
Time domain x(t)x(t)x(t)
Frequency domain X(f)X(f)X(f)rect(tT)Π(tT)\text{rect}\left(\frac{t}{T}\right)\quad\Pi\left(\frac{t}{T}\right)rect(Tt)Π(Tt)
Tsinc(fT)T \text{sinc}(fT)Tsinc(fT)sinc(2Wt)\text{sinc}(2Wt)sinc(2Wt)
12Wrect(f2W)12WΠ(f2W)\frac{1}{2W}\text{rect}\left(\frac{f}{2W}\right)\quad\frac{1}{2W}\Pi\left(\frac{f}{2W}\right)2W1rect(2Wf)2W1Π(2Wf)exp(−at)u(t),a>0\exp(-at)u(t),\quad a>0exp(−at)u(t),a>0
1a+j2πf\frac{1}{a + j2\pi f}a+j2πf1exp(−a∣t∣),a>0\exp(-a\lvert t \rvert),\quad a>0exp(−a∣t∣),a>0
2aa2+(2πf)2\frac{2a}{a^2 + (2\pi f)^2}a2+(2πf)22aexp(−πt2)\exp(-\pi t^2)exp(−πt2)
exp(−πf2)\exp(-\pi f^2)exp(−πf2)1−∣t∣T,∣t∣<Ttri(t/T)1 - \frac{\lvert t \rvert}{T},\quad\lvert t \rvert < T\quad\text{tri}(t/T)1−T∣t∣,∣t∣<Ttri(t/T)
Tsinc2(fT)T \text{sinc}^2(fT)Tsinc2(fT)δ(t)\delta(t)δ(t)
111111
δ(f)\delta(f)δ(f)δ(t−t0)\delta(t - t_0)δ(t−t0)
exp(−j2πft0)\exp(-j2\pi f t_0)exp(−j2πft0)exp(j2πfct)\exp(j2\pi f_c t)exp(j2πfct)
δ(f−fc)\delta(f - f_c)δ(f−fc)cos(2πfct)\cos(2\pi f_c t)cos(2πfct)
12[δ(f−fc)+δ(f+fc)]\frac{1}{2}[\delta(f - f_c) + \delta(f + f_c)]21[δ(f−fc)+δ(f+fc)]cos(2πfct+θ)\cos(2\pi f_c t+\theta)cos(2πfct+θ)
12[δ(f−fc)exp(jθ)+δ(f+fc)exp(−jθ)]Use for coherent recv.\frac{1}{2}[\delta(f - f_c)\exp(j\theta) + \delta(f + f_c)\exp(-j\theta)]\quad\text{Use for coherent recv.}21[δ(f−fc)exp(jθ)+δ(f+fc)exp(−jθ)]Use for coherent recv.sin(2πfct)\sin(2\pi f_c t)sin(2πfct)
12j[δ(f−fc)−δ(f+fc)]\frac{1}{2j} [\delta(f - f_c) - \delta(f + f_c)]2j1[δ(f−fc)−δ(f+fc)]sin(2πfct+θ)\sin(2\pi f_c t+\theta)sin(2πfct+θ)
12j[δ(f−fc)exp(jθ)−δ(f+fc)exp(−jθ)]\frac{1}{2j} [\delta(f - f_c)\exp(j\theta) - \delta(f + f_c)\exp(-j\theta)]2j1[δ(f−fc)exp(jθ)−δ(f+fc)exp(−jθ)]sgn(t)\text{sgn}(t)sgn(t)
1jπf\frac{1}{j\pi f}jπf11πt\frac{1}{\pi t}πt1
−jsgn(f)-j \text{sgn}(f)−jsgn(f)u(t)u(t)u(t)
12δ(f)+1j2πf\frac{1}{2} \delta(f) + \frac{1}{j2\pi f}21δ(f)+j2πf1∑n=−∞∞δ(t−nT0)\sum_{n=-\infty}^{\infty} \delta(t - nT_0)∑n=−∞∞δ(t−nT0)
1T0∑n=−∞∞δ(f−nT0)=f0∑n=−∞∞δ(f−nf0)\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \delta\left(f - \frac{n}{T_0}\right)=f_0 \sum_{n=-\infty}^{\infty} \delta\left(f - n f_0\right)T01∑n=−∞∞δ(f−T0n)=f0∑n=−∞∞δ(f−nf0)Time domain x(t)x(t)x(t)
Frequency domain X(f)X(f)X(f)
Propertyg(t−a)g(t-a)g(t−a)
exp(−j2πfa)G(f)\exp(-j2\pi fa)G(f)exp(−j2πfa)G(f)
Time shiftingexp(−j2πfct)g(t)\exp(-j2\pi f_c t)g(t)exp(−j2πfct)g(t)
G(f−fc)G(f-f_c)G(f−fc)
Frequency shiftingg(bt)g(bt)g(bt)
G(f/b)∣b∣\frac{G(f/b)}{|b|}∣b∣G(f/b)
Time scalingg(bt−a)g(bt-a)g(bt−a)
1∣b∣exp(−j2πa(f/b))⋅G(f/b)\frac{1}{|b|}\exp(-j2\pi a(f/b))\cdot G(f/b)∣b∣1exp(−j2πa(f/b))⋅G(f/b)
Time scaling and shiftingddtg(t)\frac{d}{dt}g(t)dtdg(t)
j2πfG(f)j2\pi fG(f)\quadj2πfG(f)
Differentiation wrt timetg(t)tg(t)tg(t)
12πddfG(f)\frac{1}{2\pi}\frac{d}{df}G(f)\quad2π1dfdG(f)
Differentiation wrt frequencyg∗(t)g^*(t)g∗(t)
G∗(−f)G^*(-f)G∗(−f)
Conjugate functionsG(t)G(t)G(t)
g(−f)g(-f)g(−f)
Duality∫−∞tg(τ)dτ\int_{-\infty}^t g(\tau)d\tau∫−∞tg(τ)dτ
1j2πfG(f)+G(0)2δ(f)\frac{1}{j2\pi f}G(f)+\frac{G(0)}{2}\delta(f)j2πf1G(f)+2G(0)δ(f)
Integration wrt timeg(t)h(t)g(t)h(t)g(t)h(t)
G(f)∗H(f)G(f)*H(f)G(f)∗H(f)
Time multiplicationg(t)∗h(t)g(t)*h(t)g(t)∗h(t)
G(f)H(f)G(f)H(f)G(f)H(f)
Time convolutionag(t)+bh(t)ag(t)+bh(t)ag(t)+bh(t)
aG(f)+bH(f)aG(f)+bH(f)aG(f)+bH(f)
Linearity a,ba,ba,b constants∫−∞∞x(t)y∗(t)dt\int_{-\infty}^\infty x(t)y^*(t)dt∫−∞∞x(t)y∗(t)dt
∫−∞∞X(f)Y∗(f)df\int_{-\infty}^\infty X(f)Y^*(f)df∫−∞∞X(f)Y∗(f)df
Parseval's theoremEx=∫−∞∞∣x(t)∣2dtE_x=\int_{-\infty}^\infty |x(t)|^2dtEx=∫−∞∞∣x(t)∣2dt
Ex=∫−∞∞∣X(f)∣2dfE_x=\int_{-\infty}^\infty |X(f)|^2dfEx=∫−∞∞∣X(f)∣2df
Parseval's theoremDescription
Propertyg(0)=∫−∞∞G(f)dfg(0)=\int_{-\infty}^\infty G(f)dfg(0)=∫−∞∞G(f)df
Area under G(f)G(f)G(f)G(0)=∫−∞∞G(t)dtG(0)=\int_{-\infty}^\infty G(t)dtG(0)=∫−∞∞G(t)dt
Area under g(t)g(t)g(t)u(t)={1,t>012,t=00,t<0Unit Step Functionsgn(t)={+1,t>00,t=0−1,t<0Signum Functionsinc(2Wt)=sin(2πWt)2πWtsinc Functionrect(t)=Π(t)={1,−0.5<t<0.50,∣t∣>0.5Rectangular/Gate Functiontri(t/T)={1−∣t∣T,∣t∣<T0,∣t∣≥T=1TΠ(t/T)∗Π(t/T)Triangle Functiong(t)∗h(t)=(g∗h)(t)=∫∞∞g(τ)h(t−τ)dτConvolution\begin{align*}
u(t) &= \begin{cases} 1, & t > 0 \\ \frac{1}{2}, & t = 0 \\ 0, & t < 0 \end{cases}&\text{Unit Step Function}\\
\text{sgn}(t) &= \begin{cases} +1, & t > 0 \\ 0, & t = 0 \\ -1, & t < 0 \end{cases}&\text{Signum Function}\\
\text{sinc}(2Wt) &= \frac{\sin(2\pi W t)}{2\pi W t}&\text{sinc Function}\\
\text{rect}(t) = \Pi(t) &= \begin{cases} 1, & -0.5 < t < 0.5 \\ 0, & \lvert t \rvert > 0.5 \end{cases}&\text{Rectangular/Gate Function}\\
\text{tri}(t/T) &= \begin{cases} 1 - \frac{|t|}{T}, & \lvert t\rvert < T \\ 0, & \lvert t \rvert \geq T \end{cases}=\frac{1}{T}\Pi(t/T)*\Pi(t/T)&\text{Triangle Function}\\
g(t)*h(t)=(g*h)(t)&=\int_\infty^\infty g(\tau)h(t-\tau)d\tau&\text{Convolution}\\
\end{align*}
u(t)sgn(t)sinc(2Wt)rect(t)=Π(t)tri(t/T)g(t)∗h(t)=(g∗h)(t)=⎩⎨⎧1,21,0,t>0t=0t<0=⎩⎨⎧+1,0,−1,t>0t=0t<0=2πWtsin(2πWt)={1,0,−0.5<t<0.5∣t∣>0.5={1−T∣t∣,0,∣t∣<T∣t∣≥T=T1Π(t/T)∗Π(t/T)=∫∞∞g(τ)h(t−τ)dτUnit Step FunctionSignum Functionsinc FunctionRectangular/Gate FunctionTriangle FunctionConvolutionFourier transform of continuous time periodic signal
Required for some questions on sampling:
Transform a continuous time-periodic signal xp(t)=∑n=−∞∞x(t−nTs)x_p(t)=\sum_{n=-\infty}^\infty x(t-nT_s)xp(t)=∑n=−∞∞x(t−nTs) with period TsT_sTs:
Xp(f)=∑n=−∞∞Cnδ(f−nfs)fs=1TsX_p(f)=\sum_{n=-\infty}^\infty C_n\delta(f-nf_s)\quad f_s=\frac{1}{T_s}
Xp(f)=n=−∞∑∞Cnδ(f−nfs)fs=Ts1Calculate CnC_nCn coefficient as follows from xp(t)x_p(t)xp(t):
Cn=1Ts∫Tsxp(t)exp(−j2πfst)dt=1TsX(nfs)(TODO: Check)x(t−nTs) is contained in the interval Ts\begin{align*}
C_n&=\frac{1}{T_s} \int_{T_s} x_p(t)\exp(-j2\pi f_s t)dt=\frac{1}{T_s} X(nf_s)\quad\color{red}\text{(TODO: Check)}\quad\color{white}\text{$x(t-nT_s)$ is contained in the interval $T_s$}
\end{align*}
Cn=Ts1∫Tsxp(t)exp(−j2πfst)dt=Ts1X(nfs)(TODO: Check)x(t−nTs) is contained in the interval TsShape functions
Random processes examples
Example: separate RV from expressionX(t)=Acos(2πfct)A∼N(μ=5,σ2=1) ⟹ E[X(t)]=E[Acos(2πfct)]=E[A]cos(2πfct)=5cos(2πfct)Example: random phaseX(t)=Bcos(2πfct+θ)θ∼U(0,2π) ⟹ E[X(t)]=E[Bcos(2πfct+θ)]=B∫02π12π⏟uniformcos(2πfct+θ)dθ=0\begin{align*}
&\text{Example: separate RV from expression}\\
X(t) &= A\cos(2\pi f_c t)\quad A\thicksim \mathcal{N}(\mu=5,\sigma^2=1)\\
\implies E[X(t)] &= E[A\cos(2\pi f_c t)] = E[A]\cos(2\pi f_c t) = 5\cos(2\pi f_c t)\\
&\text{Example: random phase}\\
X(t) &= B\cos(2\pi f_c t+\theta)\quad \theta\thicksim \mathcal{U}(0,2\pi)\\
\implies E[X(t)] &= E[B\cos(2\pi f_c t+\theta)] = B\int_0^{2\pi}\underbrace{\frac{1}{2\pi}}_{\text{uniform}}\cos(2\pi f_c t+\theta)d\theta=0
\end{align*}
X(t)⟹E[X(t)]X(t)⟹E[X(t)]Example: separate RV from expression=Acos(2πfct)A∼N(μ=5,σ2=1)=E[Acos(2πfct)]=E[A]cos(2πfct)=5cos(2πfct)Example: random phase=Bcos(2πfct+θ)θ∼U(0,2π)=E[Bcos(2πfct+θ)]=B∫02πuniform2π1cos(2πfct+θ)dθ=0Wide sense stationary (WSS)
Two conditions for WSS:
Constant mean
Autocorrelation only dependent on time differenceμX(t)=μX Constant\mu_X(t) = \mu_X\text{ Constant}μX(t)=μX Constant
RXX(t1,t2)=RX(t1−t2)=RX(τ)R_{XX}(t_1,t_2)=R_X(t_1-t_2)=R_X(\tau)RXX(t1,t2)=RX(t1−t2)=RX(τ)μX(t)=E[X(t)]\mu_X(t)=E[X(t)]μX(t)=E[X(t)]
E[X(t1)X(t2)]=E[X(t)X(t+τ)]E[X(t_1)X(t_2)]=E[X(t)X(t+\tau)]E[X(t1)X(t2)]=E[X(t)X(t+τ)]Ergodicity
⟨X(t)⟩T=12T∫−TTx(t)dt⟨X(t+τ)X(t)⟩T=12T∫−TTx(t+τ)x(t)dtE[⟨X(t)⟩T]=12T∫−TTx(t)dt=12T∫−TTmXdt=mX\begin{align*}
\braket{X(t)}_T&=\frac{1}{2T}\int_{-T}^{T}x(t)dt\\
\braket{X(t+\tau)X(t)}_T&=\frac{1}{2T}\int_{-T}^{T}x(t+\tau)x(t)dt\\
E[\braket{X(t)}_T]&=\frac{1}{2T}\int_{-T}^{T}x(t)dt=\frac{1}{2T}\int_{-T}^{T}m_Xdt=m_X\\
\end{align*}
⟨X(t)⟩T⟨X(t+τ)X(t)⟩TE[⟨X(t)⟩T]=2T1∫−TTx(t)dt=2T1∫−TTx(t+τ)x(t)dt=2T1∫−TTx(t)dt=2T1∫−TTmXdt=mXType
Normal
Mean square senseergodic in mean
limT→∞⟨X(t)⟩T=mX(t)=mX\lim_{T\to\infty}\braket{X(t)}_T=m_X(t)=m_XlimT→∞⟨X(t)⟩T=mX(t)=mX
limT→∞VAR[⟨X(t)⟩T]=0\lim_{T\to\infty}\text{VAR}[\braket{X(t)}_T]=0limT→∞VAR[⟨X(t)⟩T]=0ergodic in autocorrelation function
limT→∞⟨X(t+τ)X(t)⟩T=RX(τ)\lim_{T\to\infty}\braket{X(t+\tau)X(t)}_T=R_X(\tau)limT→∞⟨X(t+τ)X(t)⟩T=RX(τ)
limT→∞VAR[⟨X(t+τ)X(t)⟩T]=0\lim_{T\to\infty}\text{VAR}[\braket{X(t+\tau)X(t)}_T]=0limT→∞VAR[⟨X(t+τ)X(t)⟩T]=0Note: A WSS random process needs to be both ergodic in mean and autocorrelation to be considered an ergodic process
Other identities
f∗(g∗h)=(f∗g)∗hConvolution associativea(f∗g)=(af)∗gConvolution associative∑x=−∞∞(f(xa)δ(ω−xb))=f(ωab)\begin{align*}
f*(g*h) &=(f*g)*h\quad\text{Convolution associative}\\
a(f*g) &= (af)*g \quad\text{Convolution associative}\\
\sum_{x=-\infty}^\infty(f(x a)\delta(\omega-x b))&=f\left(\frac{\omega a}{b}\right)
\end{align*}
f∗(g∗h)a(f∗g)x=−∞∑∞(f(xa)δ(ω−xb))=(f∗g)∗hConvolution associative=(af)∗gConvolution associative=f(bωa)Other trig
cos2θ=2cos2θ−1⇔cos2θ+12=cos2θe−jα−ejα=−2jsin(α)e−jα+ejα=2cos(α)cos(−A)=cos(A)sin(−A)=−sin(A)sin(A+π/2)=cos(A)sin(A−π/2)=−cos(A)cos(A−π/2)=sin(A)cos(A+π/2)=−sin(A)∫x∈Rsinc(Ax)=1∣A∣\begin{align*}
\cos2\theta=2 \cos^2 \theta-1&\Leftrightarrow\frac{\cos2\theta+1}{2}=\cos^2\theta\\
e^{-j\alpha}-e^{j\alpha}&=-2j \sin(\alpha)\\
e^{-j\alpha}+e^{j\alpha}&=2 \cos(\alpha)\\
\cos(-A)&=\cos(A)\\
\sin(-A)&=-\sin(A)\\
\sin(A+\pi/2)&=\cos(A)\\
\sin(A-\pi/2)&=-\cos(A)\\
\cos(A-\pi/2)&=\sin(A)\\
\cos(A+\pi/2)&=-\sin(A)\\
\int_{x\in\mathbb{R}}\text{sinc}(A x) &= \frac{1}{|A|}\\
\end{align*}
cos2θ=2cos2θ−1e−jα−ejαe−jα+ejαcos(−A)sin(−A)sin(A+π/2)sin(A−π/2)cos(A−π/2)cos(A+π/2)∫x∈Rsinc(Ax)⇔2cos2θ+1=cos2θ=−2jsin(α)=2cos(α)=cos(A)=−sin(A)=cos(A)=−cos(A)=sin(A)=−sin(A)=∣A∣1cos(A+B)=cos(A)cos(B)−sin(A)sin(B)sin(A+B)=sin(A)cos(B)+cos(A)sin(B)cos(A)cos(B)=12(cos(A−B)+cos(A+B))cos(A)sin(B)=12(sin(A+B)−sin(A−B))sin(A)sin(B)=12(cos(A−B)−cos(A+B))\begin{align*}
\cos(A+B) &= \cos (A) \cos (B)-\sin (A) \sin (B) \\
\sin(A+B) &= \sin (A) \cos (B)+\cos (A) \sin (B) \\
\cos(A)\cos(B) &= \frac{1}{2} (\cos (A-B)+\cos (A+B)) \\
\cos(A)\sin(B) &= \frac{1}{2} (\sin (A+B)-\sin (A-B)) \\
\sin(A)\sin(B) &= \frac{1}{2} (\cos (A-B)-\cos (A+B)) \\
\end{align*}
cos(A+B)sin(A+B)cos(A)cos(B)cos(A)sin(B)sin(A)sin(B)=cos(A)cos(B)−sin(A)sin(B)=sin(A)cos(B)+cos(A)sin(B)=21(cos(A−B)+cos(A+B))=21(sin(A+B)−sin(A−B))=21(cos(A−B)−cos(A+B))cos(A)+cos(B)=2cos(A2−B2)cos(A2+B2)cos(A)−cos(B)=−2sin(A2−B2)sin(A2+B2)sin(A)+sin(B)=2sin(A2+B2)cos(A2−B2)sin(A)−sin(B)=2sin(A2−B2)cos(A2+B2)cos(A)+sin(B)=−2sin(A2−B2−π4)sin(A2+B2+π4)cos(A)−sin(B)=−2sin(A2+B2−π4)sin(A2−B2+π4)\begin{align*}
\cos(A)+\cos(B) &= 2 \cos \left(\frac{A}{2}-\frac{B}{2}\right) \cos \left(\frac{A}{2}+\frac{B}{2}\right) \\
\cos(A)-\cos(B) &= -2 \sin \left(\frac{A}{2}-\frac{B}{2}\right) \sin \left(\frac{A}{2}+\frac{B}{2}\right) \\
\sin(A)+\sin(B) &= 2 \sin \left(\frac{A}{2}+\frac{B}{2}\right) \cos \left(\frac{A}{2}-\frac{B}{2}\right) \\
\sin(A)-\sin(B) &= 2 \sin \left(\frac{A}{2}-\frac{B}{2}\right) \cos \left(\frac{A}{2}+\frac{B}{2}\right) \\
\cos(A)+\sin(B)&= -2 \sin \left(\frac{A}{2}-\frac{B}{2}-\frac{\pi }{4}\right) \sin \left(\frac{A}{2}+\frac{B}{2}+\frac{\pi }{4}\right) \\
\cos(A)-\sin(B)&= -2 \sin \left(\frac{A}{2}+\frac{B}{2}-\frac{\pi }{4}\right) \sin \left(\frac{A}{2}-\frac{B}{2}+\frac{\pi }{4}\right) \\
\end{align*}
cos(A)+cos(B)cos(A)−cos(B)sin(A)+sin(B)sin(A)−sin(B)cos(A)+sin(B)cos(A)−sin(B)=2cos(2A−2B)cos(2A+2B)=−2sin(2A−2B)sin(2A+2B)=2sin(2A+2B)cos(2A−2B)=2sin(2A−2B)cos(2A+2B)=−2sin(2A−2B−4π)sin(2A+2B+4π)=−2sin(2A+2B−4π)sin(2A−2B+4π)IQ/Complex envelope
Def. g~(t)=gI(t)+jgQ(t)\tilde{g}(t)=g_I(t)+jg_Q(t)g~(t)=gI(t)+jgQ(t) as the complex envelope. Best to convert to ejθe^{j\theta}ejθ form.
Convert complex envelope representation to time-domain representation of signal
g(t)=gI(t)cos(2πfct)−gQ(t)sin(2πfct)=Re[g~(t)exp(j2πfct)]=A(t)cos(2πfct+ϕ(t))A(t)=∣g(t)∣=gI2(t)+gQ2(t)Amplitudeϕ(t)PhasegI(t)=A(t)cos(ϕ(t))In-phase componentgQ(t)=A(t)sin(ϕ(t))Quadrature-phase component\begin{align*}
g(t)&=g_I(t)\cos(2\pi f_c t)-g_Q(t)\sin(2\pi f_c t)\\
&=\text{Re}[\tilde{g}(t)\exp{(j2\pi f_c t)}]\\
&=A(t)\cos(2\pi f_c t+\phi(t))\\
A(t)&=|g(t)|=\sqrt{g_I^2(t)+g_Q^2(t)}\quad\text{Amplitude}\\
\phi(t)&\quad\text{Phase}\\
g_I(t)&=A(t)\cos(\phi(t))\quad\text{In-phase component}\\
g_Q(t)&=A(t)\sin(\phi(t))\quad\text{Quadrature-phase component}\\
\end{align*}
g(t)A(t)ϕ(t)gI(t)gQ(t)=gI(t)cos(2πfct)−gQ(t)sin(2πfct)=Re[g~(t)exp(j2πfct)]=A(t)cos(2πfct+ϕ(t))=∣g(t)∣=gI2(t)+gQ2(t)AmplitudePhase=A(t)cos(ϕ(t))In-phase component=A(t)sin(ϕ(t))Quadrature-phase componentFor transfer function
h(t)=hI(t)cos(2πfct)−hQ(t)sin(2πfct)=2Re[h~(t)exp(j2πfct)]⇒h~(t)=hI(t)/2+jhQ(t)/2=A(t)/2exp(jϕ(t))\begin{align*}
h(t)&=h_I(t)\cos(2\pi f_c t)-h_Q(t)\sin(2\pi f_c t)\\
&=2\text{Re}[\tilde{h}(t)\exp{(j2\pi f_c t)}]\\
\Rightarrow\tilde{h}(t)&=h_I(t)/2+jh_Q(t)/2=A(t)/2\exp{(j\phi(t))}
\end{align*}
h(t)⇒h~(t)=hI(t)cos(2πfct)−hQ(t)sin(2πfct)=2Re[h~(t)exp(j2πfct)]=hI(t)/2+jhQ(t)/2=A(t)/2exp(jϕ(t))AM
Conventional AM modulation (CAM)
x(t)=Accos(2πfct)[1+kam(t)]=Accos(2πfct)[1+mam(t)/Ac]CAM signalwhere m(t)=Amm^(t) and m^(t) is the normalized modulating signalma=∣mint(kam(t))∣Acka is the amplitude sensitivity (volt−1), ma is the modulation index.ma=Amax−AminAmax+Amin (Symmetrical m(t))ma=kaAm (Symmetrical m(t))Pc=Ac22Carrier powerPs=14ma2Ac2Signal power, total of all 4 sideband power, single-tone caseη=Signal PowerTotal Power=PsPs+Pc=PsPxPower efficiencyBT=2fm=2B\begin{align*}
x(t)&=A_c\cos(2\pi f_c t)\left[1+k_a m(t)\right]=A_c\cos(2\pi f_c t)\left[1+m_a m(t)/A_c\right]\quad\text{CAM signal}\\
&\text{where $m(t)=A_m\hat m(t)$ and $\hat m(t)$ is the normalized modulating signal}\\
m_a &= \frac{|\min_t(k_a m(t))|}{A_c} \quad\text{$k_a$ is the amplitude sensitivity ($\text{volt}^{-1}$), $m_a$ is the modulation index.}\\
m_a &= \frac{A_\text{max}-A_\text{min}}{A_\text{max}+A_\text{min}}\quad\text{ (Symmetrical $m(t)$)}\\
m_a&=k_a A_m \quad\text{ (Symmetrical $m(t)$)}\\
P_c &=\frac{ {A_c}^2}{2}\quad\text{Carrier power}\\
P_s &=\frac{1}{4}{m_a}^2{A_c}^2\quad\text{Signal power, \textbf{total} of all 4 sideband power, \textbf{single-tone} case}\\
\eta&=\frac{\text{Signal Power}}{\text{Total Power}}=\frac{P_s}{P_s+P_c}=\frac{P_s}{P_x}\quad\text{Power efficiency}\\
B_T&=2f_m=2B\\
\end{align*}
x(t)mamamaPcPsηBT=Accos(2πfct)[1+kam(t)]=Accos(2πfct)[1+mam(t)/Ac]CAM signalwhere m(t)=Amm^(t) and m^(t) is the normalized modulating signal=Ac∣mint(kam(t))∣ka is the amplitude sensitivity (volt−1), ma is the modulation index.=Amax+AminAmax−Amin (Symmetrical m(t))=kaAm (Symmetrical m(t))=2Ac2Carrier power=41ma2Ac2Signal power, total of all 4 sideband power, single-tone case=Total PowerSignal Power=Ps+PcPs=PxPsPower efficiency=2fm=2BBTB_TBT: Signal bandwidth
BBB: Bandwidth of modulating waveOvermodulation (resulting in phase reversals at crossing points): ma>1m_a>1ma>1
Double sideband suppressed carrier (DSB-SC)
xDSB(t)=Accos(2πfct)m(t)BT=2fm=2B\begin{align*}
x_\text{DSB}(t) &= A_c \cos{(2\pi f_c t)} m(t)\\
B_T&=2f_m=2B
\end{align*}
xDSB(t)BT=Accos(2πfct)m(t)=2fm=2BFM/PM
s(t)=Accos[2πfct+kpm(t)]Phase modulated (PM)s(t)=Accos(θi(t))=Accos[2πfct+2πkf∫−∞tm(τ)dτ]Frequency modulated (FM)s(t)=Accos[2πfct+βsin(2πfmt)]FM single tonefi(t)=12πddtθi(t)=fc+kfm(t)=fc+Δfmaxm^(t)Instantaneous frequencyΔfmax=maxt∣fi(t)−fc∣=kfmaxt∣m(t)∣Maximum frequency deviationΔfmax=kfAmMaximum frequency deviation (sinusoidal)β=ΔfmaxfmModulation indexD=ΔfmaxWmDeviation ratio, where Wm is bandwidth of m(t) (Use FT)\begin{align*}
s(t) &= A_c\cos\left[2\pi f_c t + k_p m(t)\right]\quad\text{Phase modulated (PM)}\\
s(t) &= A_c\cos(\theta_i(t))=A_c\cos\left[2\pi f_c t + 2 \pi k_f \int_{-\infty}^t m(\tau) d\tau\right]\quad\text{Frequency modulated (FM)}\\
s(t) &= A_c\cos\left[2\pi f_c t + \beta \sin(2\pi f_m t)\right]\quad\text{FM single tone}\\
f_i(t) &= \frac{1}{2\pi}\frac{d}{dt}\theta_i(t)=f_c+k_f m(t)=f_c+\Delta f_\text{max}\hat m(t)\quad\text{Instantaneous frequency}\\
\Delta f_\text{max}&=\max_t|f_i(t)-f_c|=k_f \max_t |m(t)|\quad\text{Maximum frequency deviation}\\
\Delta f_\text{max}&=k_f A_m\quad\text{Maximum frequency deviation (sinusoidal)}\\
\beta&=\frac{\Delta f_\text{max}}{f_m}\quad\text{Modulation index}\\
D&=\frac{\Delta f_\text{max}}{W_m}\quad\text{Deviation ratio, where $W_m$ is bandwidth of $m(t)$ (Use FT)}\\
\end{align*}
s(t)s(t)s(t)fi(t)ΔfmaxΔfmaxβD=Accos[2πfct+kpm(t)]Phase modulated (PM)=Accos(θi(t))=Accos[2πfct+2πkf∫−∞tm(τ)dτ]Frequency modulated (FM)=Accos[2πfct+βsin(2πfmt)]FM single tone=2π1dtdθi(t)=fc+kfm(t)=fc+Δfmaxm^(t)Instantaneous frequency=tmax∣fi(t)−fc∣=kftmax∣m(t)∣Maximum frequency deviation=kfAmMaximum frequency deviation (sinusoidal)=fmΔfmaxModulation index=WmΔfmaxDeviation ratio, where Wm is bandwidth of m(t) (Use FT)Bessel function
Jn(β)={J−n(β)n is even−J−n(β)n is odd1=∑n∈ZJn2(β)Conservation of power\begin{align*}
J_n(\beta)&=\begin{cases}
J_{-n}(\beta) & \text{$n$ is even}\\
-J_{-n}(\beta) & \text{$n$ is odd}
\end{cases}\\
1&=\sum_{n\in\mathbb{Z}}{J_n}^2(\beta)&\text{Conservation of power}\\
\end{align*}
Jn(β)1={J−n(β)−J−n(β)n is evenn is odd=n∈Z∑Jn2(β)Conservation of powerBessel form of FM signal
s(t)=Accos[2πfct+βsin(2πfmt)]⟺s(t)=Ac∑n=−∞∞Jn(β)cos[2π(fc+nfm)t]\begin{align*}
s(t) &= A_c\cos\left[2\pi f_c t + \beta \sin(2\pi f_m t)\right]\\
\Longleftrightarrow s(t) &= A_c\sum_{n=-\infty}^{\infty}J_n(\beta)\cos[2\pi(f_c+nf_m)t]
\end{align*}
s(t)⟺s(t)=Accos[2πfct+βsin(2πfmt)]=Acn=−∞∑∞Jn(β)cos[2π(fc+nfm)t]FM signal power
Pav=Ac22Av. power of full signalPi=Ac2∣Ji(β)∣22Av. power of band ii=0 ⟹ fc+0fmMiddle bandi=1 ⟹ fc+1fm1st sidebandi=−1 ⟹ fc−1fm-1st sideband…\begin{align*}
P_\text{av}&=\frac{ {A_c}^2}{2}&\text{Av. power of full signal}\\
P_\text{i}&=\frac{ {A_c}^2|{J_\text{i}}(\beta)|^2}{2}&\text{Av. power of band $i$}\\
i=0&\implies f_c+0f_m&\text{Middle band}\\
i=1&\implies f_c+1f_m&\text{1st sideband}\\
i=-1&\implies f_c-1f_m&\text{-1st sideband}\\
&\dots\\
\end{align*}
PavPii=0i=1i=−1=2Ac2=2Ac2∣Ji(β)∣2⟹fc+0fm⟹fc+1fm⟹fc−1fm…Av. power of full signalAv. power of band iMiddle band1st sideband-1st sidebandCarson's rule to find BBB (98% power bandwidth rule)
B=2(β+1)fmB=2(Δfmax+fm)B=2(D+1)WmB={2(Δfmax+fm)=2(Δfmax+Wm)FM, sinusoidal message2(Δϕmax+1)fm=2(Δϕmax+1)WmPM, sinusoidal messageD<1,β<1 ⟹ NarrowbandD>1,β>1 ⟹ Wideband\begin{align*}
B &= 2(\beta + 1)f_m\\
B &= 2(\Delta f_\text{max}+f_m)\\
B &= 2(D+1)W_m\\
B &= \begin{cases}
2(\Delta f_\text{max}+f_m)=2(\Delta f_\text{max}+W_m) & \text{FM, sinusoidal message}\\
2(\Delta\phi_\text{max} + 1)f_m=2(\Delta \phi_\text{max}+1)W_m & \text{PM, sinusoidal message}
\end{cases}\\\\
& D<1,\beta<1 \implies \text{Narrowband}\quad D>1,\beta>1\implies \text{Wideband}
\end{align*}
BBBB=2(β+1)fm=2(Δfmax+fm)=2(D+1)Wm={2(Δfmax+fm)=2(Δfmax+Wm)2(Δϕmax+1)fm=2(Δϕmax+1)WmFM, sinusoidal messagePM, sinusoidal messageD<1,β<1⟹NarrowbandD>1,β>1⟹WidebandComplex envelope of a FM signal
s(t)=Accos(2πfct+βsin(2πfmt))⟺s~(t)=Acexp(jβsin(2πfmt))s(t)=Re[s~(t)exp(j2πfct)]s~(t)=Ac∑n=−∞∞Jn(β)exp(j2πfmt)\begin{align*}
s(t)&=A_c\cos(2\pi f_c t+\beta\sin(2\pi f_m t))\\
\Longleftrightarrow \tilde{s}(t) &= A_c\exp(j\beta\sin(2\pi f_m t))\\
s(t)&=\text{Re}[\tilde{s}(t)\exp{(j2\pi f_c t)}]\\
\tilde{s}(t) &= A_c\sum_{n=-\infty}^{\infty}J_n(\beta)\exp(j2\pi f_m t)
\end{align*}
s(t)⟺s~(t)s(t)s~(t)=Accos(2πfct+βsin(2πfmt))=Acexp(jβsin(2πfmt))=Re[s~(t)exp(j2πfct)]=Acn=−∞∑∞Jn(β)exp(j2πfmt)Power, energy and autocorrelation
GWGN(f)=N02Gx(f)=∣H(f)∣2Gw(f) (PSD)Gx(f)=G(f)Gw(f) (PSD)Gx(f)=limT→∞∣XT(f)∣2T (PSD)Gx(f)=F[Rx(τ)] (WSS)Px=σx2=∫RGx(f)dfFor zero meanPx=σx2=limt→∞1T∫−T/2T/2∣x(t)∣2dtFor zero meanP[Acos(2πft+ϕ)]=A22Power of sinusoid Ex=∫−∞∞∣x(t)∣2dt=∫−∞∞∣X(f)∣2dfParseval’s theoremRx(τ)=F(Gx(f))PSD to AutocorrelationPx=Rx(0)Average power of WSS process x(t)\begin{align*}
G_\text{WGN}(f)&=\frac{N_0}{2}\\
G_x(f)&=|H(f)|^2G_w(f)\text{ (PSD)}\\
G_x(f)&=G(f)G_w(f)\text{ (PSD)}\\
G_x(f)&=\lim_{T\to\infty}\frac{|X_T(f)|^2}{T}\text{ (PSD)}\\
G_x(f)&=\mathfrak{F}[R_x(\tau)]\text{ (WSS)}\\
P_x&={\sigma_x}^2=\int_\mathbb{R}G_x(f)df\quad\text{For zero mean}\\
P_x&={\sigma_x}^2=\lim_{t\to\infty}\frac{1}{T}\int_{-T/2}^{T/2}|x(t)|^2dt\quad\text{For zero mean}\\
P[A\cos(2\pi f t+\phi)]&=\frac{A^2}{2}\quad\text{Power of sinusoid }\\
E_x&=\int_{-\infty}^{\infty}|x(t)|^2dt=\int_{-\infty}^{\infty}|X(f)|^2df\quad\text{Parseval's theorem}\\
R_x(\tau) &= \mathfrak{F}(G_x(f))\quad\text{PSD to Autocorrelation}\\
P_x &= R_x(0)\quad\text{Average power of WSS process $x(t)$}\\
\end{align*}
GWGN(f)Gx(f)Gx(f)Gx(f)Gx(f)PxPxP[Acos(2πft+ϕ)]ExRx(τ)Px=2N0=∣H(f)∣2Gw(f) (PSD)=G(f)Gw(f) (PSD)=T→∞limT∣XT(f)∣2 (PSD)=F[Rx(τ)] (WSS)=σx2=∫RGx(f)dfFor zero mean=σx2=t→∞limT1∫−T/2T/2∣x(t)∣2dtFor zero mean=2A2Power of sinusoid =∫−∞∞∣x(t)∣2dt=∫−∞∞∣X(f)∣2dfParseval’s theorem=F(Gx(f))PSD to Autocorrelation=Rx(0)Average power of WSS process x(t)White noise
RW(τ)=N02δ(τ)=kT2δ(τ)=σ2δ(τ)Gw(f)=N02\begin{align*}
R_W(\tau)&=\frac{N_0}{2}\delta(\tau)=\frac{kT}{2}\delta(\tau)=\sigma^2\delta(\tau)\\
G_w(f)&=\frac{N_0}{2}\\
\end{align*}
RW(τ)Gw(f)=2N0δ(τ)=2kTδ(τ)=σ2δ(τ)=2N0Noise performance
Use formualas from previous section, Power, energy and autocorrelation.
Use these formulas in particular:GWGN(f)=N02Gx(f)=∣H(f)∣2Gw(f)Note the square in ∣H(f)∣2Px=σx2=∫RGx(f)dfOften perform graphical integration\begin{align*}
G_\text{WGN}(f)&=\frac{N_0}{2}\\
G_x(f)&=|H(f)|^2G_w(f)&\text{Note the square in $|H(f)|^2$}\\
P_x&={\sigma_x}^2=\int_\mathbb{R}G_x(f)df&\text{Often perform graphical integration}\\
\end{align*}
GWGN(f)Gx(f)Px=2N0=∣H(f)∣2Gw(f)=σx2=∫RGx(f)dfNote the square in ∣H(f)∣2Often perform graphical integrationCNRin=PinPnoiseCNRin,FM=A22WN0SNRFM=3A2kf2P2N0W3SNR(dB)=10log10(SNR)Decibels from ratio\begin{align*}
\text{CNR}_\text{in} &= \frac{P_\text{in}}{P_\text{noise}}\\
\text{CNR}_\text{in,FM} &= \frac{A^2}{2WN_0}\\
\text{SNR}_\text{FM} &= \frac{3A^2k_f^2P}{2N_0W^3}\\
\text{SNR(dB)} &= 10\log_{10}(\text{SNR}) \quad\text{Decibels from ratio}
\end{align*}
CNRinCNRin,FMSNRFMSNR(dB)=PnoisePin=2WN0A2=2N0W33A2kf2P=10log10(SNR)Decibels from ratioSampling
t=nTsTs=1fsxs(t)=x(t)δs(t)=x(t)∑n∈Zδ(t−nTs)=∑n∈Zx(nTs)δ(t−nTs)Xs(f)=fsX(f)∗∑n∈Zδ(f−nTs)=fsX(f)∗∑n∈Zδ(f−nfs) ⟹ Xs(f)=∑n∈ZfsX(f−nfs)Sampling (FT)B>12fs ⟹ 2B>fs→Aliasing\begin{align*}
t&=nT_s\\
T_s&=\frac{1}{f_s}\\
x_s(t)&=x(t)\delta_s(t)=x(t)\sum_{n\in\mathbb{Z}}\delta(t-nT_s)=\sum_{n\in\mathbb{Z}}x(nT_s)\delta(t-nT_s)\\
X_s(f)&=f_s X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-\frac{n}{T_s}\right)=f_s X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-n f_s\right)\\
\implies X_s(f)&=\sum_{n\in\mathbb{Z}}f_s X\left(f-n f_s\right)\quad\text{Sampling (FT)}\\
B&>\frac{1}{2}f_s\implies 2B>f_s\rightarrow\text{Aliasing}\\
\end{align*}
tTsxs(t)Xs(f)⟹Xs(f)B=nTs=fs1=x(t)δs(t)=x(t)n∈Z∑δ(t−nTs)=n∈Z∑x(nTs)δ(t−nTs)=fsX(f)∗n∈Z∑δ(f−Tsn)=fsX(f)∗n∈Z∑δ(f−nfs)=n∈Z∑fsX(f−nfs)Sampling (FT)>21fs⟹2B>fs→AliasingProcedure to reconstruct sampled signal
Analog signal x′(t)x'(t)x′(t) which can be reconstructed from a sampled signal xs(t)x_s(t)xs(t): Put xs(t)x_s(t)xs(t) through LPF with maximum frequency of fs/2f_s/2fs/2 and minimum frequency of −fs/2-f_s/2−fs/2. Anything outside of the BPF will be attenuated, therefore nnn which results in frequencies outside the BPF will evaluate to 000 and can be ignored.
Example: fs=5000 ⟹ LPF∈[−2500,2500]f_s=5000\implies \text{LPF}\in[-2500,2500]fs=5000⟹LPF∈[−2500,2500]
Then iterate for n=0,1,−1,2,−2,…n=0,1,-1,2,-2,\dotsn=0,1,−1,2,−2,… until the first iteration where the result is 0 since all terms are eliminated by the LPF.
TODO: Add example
Then add all terms and transform Xˉs(f)\bar X_s(f)Xˉs(f) back to time domain to get xs(t)x_s(t)xs(t)
Fourier transform of continuous time periodic signal (1)
Required for some questions on sampling:
Transform a continuous time-periodic signal xp(t)=∑n=−∞∞x(t−nTs)x_p(t)=\sum_{n=-\infty}^\infty x(t-nT_s)xp(t)=∑n=−∞∞x(t−nTs) with period TsT_sTs:
Xp(f)=∑n=−∞∞Cnδ(f−nfs)fs=1TsX_p(f)=\sum_{n=-\infty}^\infty C_n\delta(f-nf_s)\quad f_s=\frac{1}{T_s}
Xp(f)=n=−∞∑∞Cnδ(f−nfs)fs=Ts1Calculate CnC_nCn coefficient as follows from xp(t)x_p(t)xp(t):
Cn=1Ts∫Tsxp(t)exp(−j2πfst)dt=1TsX(nfs)(TODO: Check)x(t−nTs) is contained in the interval Ts\begin{align*}
C_n&=\frac{1}{T_s} \int_{T_s} x_p(t)\exp(-j2\pi f_s t)dt\\
&=\frac{1}{T_s} X(nf_s)\quad\color{red}\text{(TODO: Check)}\quad\color{white}\text{$x(t-nT_s)$ is contained in the interval $T_s$}
\end{align*}
Cn=Ts1∫Tsxp(t)exp(−j2πfst)dt=Ts1X(nfs)(TODO: Check)x(t−nTs) is contained in the interval TsNyquist criterion for zero-ISI
Do not transmit more than 2B2B2B samples per second over a channel of BBB bandwidth.
Nyquist rate=2BNyquist interval=12B\text{Nyquist rate} = 2B\quad\text{Nyquist interval}=\frac{1}{2B}
Nyquist rate=2BNyquist interval=2B1Insert here figure 8.3 from M F Mesiya - Contemporary Communication Systems (Add image to
images/sampling.png
)Cannot add directly due to copyright!
TODO: Make an open source replacement for this diagram Send a PR to GitHub.
Quantizer
Δ=xMax−xMin2kfor k-bit quantizer (V/lsb)Quantizer step size Δ\begin{align*}
\Delta &= \frac{x_\text{Max}-x_\text{Min}}{2^k} \quad\text{for $k$-bit quantizer (V/lsb)}\quad\text{Quantizer step size $\Delta$}\\
\end{align*}
Δ=2kxMax−xMinfor k-bit quantizer (V/lsb)Quantizer step size ΔQuantization noise
e:=y−xQuantization errorμE=E[E]=0Zero meanPE=σE2=Δ212=2−2mV2/3Uniformly distributed errorSQNR=Signal powerQuantization noise power=PxPESQNR(dB)=10log10(SQNR)m→m+A bits ⟹ newSQNR(dB)=SQNR(dB)+6A dB\begin{align*}
e &:= y-x\quad\text{Quantization error}\\
\mu_E &= E[E] = 0\quad\text{Zero mean}\\
P_E&={\sigma_E}^2=\frac{\Delta^2}{12}=2^{-2m}V^2/3\quad\text{Uniformly distributed error}\\
\text{SQNR}&=\frac{\text{Signal power}}{\text{Quantization noise power}}=\frac{P_x}{P_E}\\
\text{SQNR(dB)}&=10\log_{10}(\text{SQNR})\\
m\to m+A\text{ bits}&\implies \text{newSQNR(dB)}=\text{SQNR(dB)}+6A\text{ dB}
\end{align*}
eμEPESQNRSQNR(dB)m→m+A bits:=y−xQuantization error=E[E]=0Zero mean=σE2=12Δ2=2−2mV2/3Uniformly distributed error=Quantization noise powerSignal power=PEPx=10log10(SQNR)⟹newSQNR(dB)=SQNR(dB)+6A dBInsert here figure 8.17 from M F Mesiya - Contemporary Communication Systems (Add image to
images/quantizer.png
)Cannot add directly due to copyright!
TODO: Make an open source replacement for this diagram Send a PR to GitHub.
Line codes
Rb→Bit rateD→Symbol rate | Rd | 1/TbA→maV(f)→Pulse shapeVrectangle(f)=Tsinc(fT×DutyCycle)GMunipolarNRZ(f)=(M2−1)A2D12∣V(f)∣2+(M−1)24(DA)2∑l=−∞∞∣V(lD)∣2δ(f−lD)GMpolarNRZ(f)=(M2−1)A2D3∣V(f)∣2GunipolarNRZ(f)=A24Rb(sinc2(fRb)+Rbδ(f)),NB0=RbGpolarNRZ(f)=A2Rbsinc2(fRb)GunipolarNRZ(f)=A24Rb(sinc2(fRb)+Rbδ(f))GunipolarRZ(f)=A216(∑l=−∞∞δ(f−lTb)∣sinc(duty×l)∣2+Tb∣sinc(duty×fTb)∣2),NB0=2Rb\begin{align*}
R_b&\rightarrow\text{Bit rate}\\
D&\rightarrow\text{Symbol rate | }R_d\text{ | }1/T_b\\
A&\rightarrow m_a\\
V(f)&\rightarrow\text{Pulse shape}\\
V_\text{rectangle}(f)&=T\text{sinc}(fT\times\text{DutyCycle})\\
G_\text{MunipolarNRZ}(f)&=\frac{(M^2-1)A^2D}{12}|V(f)|^2+\frac{(M-1)^2}{4}(DA)^2\sum_{l=-\infty}^{\infty}|V(lD)|^2\delta(f-lD)\\
G_\text{MpolarNRZ}(f)&=\frac{(M^2-1)A^2D}{3}|V(f)|^2\\
G_\text{unipolarNRZ}(f)&=\frac{A^2}{4R_b}\left(\text{sinc}^2\left(\frac{f}{R_b}\right)+R_b\delta(f)\right), \text{NB}_0=R_b\\
G_\text{polarNRZ}(f)&=\frac{A^2}{R_b}\text{sinc}^2\left(\frac{f}{R_b}\right)\\
G_\text{unipolarNRZ}(f)&=\frac{A^2}{4R_b}\left(\text{sinc}^2\left(\frac{f}{R_b}\right)+R_b\delta(f)\right)\\
G_\text{unipolarRZ}(f)&=\frac{A^2}{16} \left(\sum _{l=-\infty }^{\infty } \delta \left(f-\frac{l}{T_b}\right) \left| \text{sinc}(\text{duty} \times l) \right| {}^2+T_b \left| \text{sinc}\left(\text{duty} \times f T_b\right) \right| {}^2\right), \text{NB}_0=2R_b
\end{align*}
RbDAV(f)Vrectangle(f)GMunipolarNRZ(f)GMpolarNRZ(f)GunipolarNRZ(f)GpolarNRZ(f)GunipolarNRZ(f)GunipolarRZ(f)→Bit rate→Symbol rate | Rd | 1/Tb→ma→Pulse shape=Tsinc(fT×DutyCycle)=12(M2−1)A2D∣V(f)∣2+4(M−1)2(DA)2l=−∞∑∞∣V(lD)∣2δ(f−lD)=3(M2−1)A2D∣V(f)∣2=4RbA2(sinc2(Rbf)+Rbδ(f)),NB0=Rb=RbA2sinc2(Rbf)=4RbA2(sinc2(Rbf)+Rbδ(f))=16A2(l=−∞∑∞δ(f−Tbl)∣sinc(duty×l)∣2+Tb∣sinc(duty×fTb)∣2),NB0=2RbTODO: Someone please make plots of the PSD for all line code types in Mathematica or Python! Send a PR to GitHub.
Modulation and basis functions
BASK
Basis functions
φ1(t)=2Tbcos(2πfct)0≤t≤Tb\begin{align*}
\varphi_1(t) &= \sqrt{\frac{2}{T_b}}\cos(2\pi f_c t)\quad0\leq t\leq T_b\\
\end{align*}
φ1(t)=Tb2cos(2πfct)0≤t≤TbSymbol mapping
bn:{1,0}→an:{1,0}b_n:\{1,0\}\to a_n:\{1,0\}
bn:{1,0}→an:{1,0}2 possible waveforms
s1(t)=AcTb2φ1(t)=2Ebφ1(t)s1(t)=0Since Eb=Eaverage=12(Ac22×Tb+0)=Ac24Tb\begin{align*}
s_1(t)&=A_c\sqrt{\frac{T_b}{2}}\varphi_1(t)=\sqrt{2E_b}\varphi_1(t)\\
s_1(t)&=0\\
&\text{Since $E_b=E_\text{average}=\frac{1}{2}(\frac{ {A_c}^2}{2}\times T_b + 0)=\frac{ {A_c}^2}{4}T_b$}
\end{align*}
s1(t)s1(t)=Ac2Tbφ1(t)=2Ebφ1(t)=0Since Eb=Eaverage=21(2Ac2×Tb+0)=4Ac2TbDistance is d=2Ebd=\sqrt{2E_b}d=2Eb
BPSK
Basis functions
φ1(t)=2Tbcos(2πfct)0≤t≤Tb\begin{align*}
\varphi_1(t) &= \sqrt{\frac{2}{T_b}}\cos(2\pi f_c t)\quad0\leq t\leq T_b\\
\end{align*}
φ1(t)=Tb2cos(2πfct)0≤t≤TbSymbol mapping
bn:{1,0}→an:{1,−1}b_n:\{1,0\}\to a_n:\{1,\color{green}-1\color{white}\}
bn:{1,0}→an:{1,−1}2 possible waveforms
s1(t)=AcTb2φ1(t)=Ebφ1(t)s1(t)=−AcTb2φ1(t)=−Ebφ2(t)Since Eb=Eaverage=12(Ac22×Tb+Ac22×Tb)=Ac22Tb\begin{align*}
s_1(t)&=A_c\sqrt{\frac{T_b}{2}}\varphi_1(t)=\sqrt{E_b}\varphi_1(t)\\
s_1(t)&=-A_c\sqrt{\frac{T_b}{2}}\varphi_1(t)=-\sqrt{E_b}\varphi_2(t)\\
&\text{Since $E_b=E_\text{average}=\frac{1}{2}(\frac{ {A_c}^2}{2}\times T_b + \frac{ {A_c}^2}{2}\times T_b)=\frac{ {A_c}^2}{2}T_b$}
\end{align*}
s1(t)s1(t)=Ac2Tbφ1(t)=Ebφ1(t)=−Ac2Tbφ1(t)=−Ebφ2(t)Since Eb=Eaverage=21(2Ac2×Tb+2Ac2×Tb)=2Ac2TbDistance is d=2Ebd=2\sqrt{E_b}d=2Eb
QPSK (M=4M=4M=4 PSK)
Basis functions
T=2TbTime per symbol for two bits Tbφ1(t)=2Tcos(2πfct)0≤t≤Tφ2(t)=2Tsin(2πfct)0≤t≤T\begin{align*}
T &= 2 T_b\quad\text{Time per symbol for two bits $T_b$}\\
\varphi_1(t) &= \sqrt{\frac{2}{T}}\cos(2\pi f_c t)\quad0\leq t\leq T\\
\varphi_2(t) &= \sqrt{\frac{2}{T}}\sin(2\pi f_c t)\quad0\leq t\leq T\\
\end{align*}
Tφ1(t)φ2(t)=2TbTime per symbol for two bits Tb=T2cos(2πfct)0≤t≤T=T2sin(2πfct)0≤t≤T4 possible waveforms
s1(t)=Es/2[φ1(t)+φ2(t)]s2(t)=Es/2[φ1(t)−φ2(t)]s3(t)=Es/2[−φ1(t)+φ2(t)]s4(t)=Es/2[−φ1(t)−φ2(t)]\begin{align*}
s_1(t)&=\sqrt{E_s/2}\left[\varphi_1(t)+\varphi_2(t)\right]\\
s_2(t)&=\sqrt{E_s/2}\left[\varphi_1(t)-\varphi_2(t)\right]\\
s_3(t)&=\sqrt{E_s/2}\left[-\varphi_1(t)+\varphi_2(t)\right]\\
s_4(t)&=\sqrt{E_s/2}\left[-\varphi_1(t)-\varphi_2(t)\right]\\
\end{align*}
s1(t)s2(t)s3(t)s4(t)=Es/2[φ1(t)+φ2(t)]=Es/2[φ1(t)−φ2(t)]=Es/2[−φ1(t)+φ2(t)]=Es/2[−φ1(t)−φ2(t)]Note on energy per symbol: Since ∣si(t)∣=Ac|s_i(t)|=A_c∣si(t)∣=Ac, have to normalize distance as follows:
si(t)=AcT/2/2×[α1iφ1(t)+α2iφ2(t)]=TAc2/4[α1iφ1(t)+α2iφ2(t)]=Es/2[α1iφ1(t)+α2iφ2(t)]\begin{align*}
s_i(t)&=A_c\sqrt{T/2}/\sqrt{2}\times\left[\alpha_{1i}\varphi_1(t)+\alpha_{2i}\varphi_2(t)\right]\\
&=\sqrt{T{A_c}^2/4}\left[\alpha_{1i}\varphi_1(t)+\alpha_{2i}\varphi_2(t)\right]\\
&=\sqrt{E_s/2}\left[\alpha_{1i}\varphi_1(t)+\alpha_{2i}\varphi_2(t)\right]\\
\end{align*}
si(t)=AcT/2/2×[α1iφ1(t)+α2iφ2(t)]=TAc2/4[α1iφ1(t)+α2iφ2(t)]=Es/2[α1iφ1(t)+α2iφ2(t)]Signal
Symbol mapping: {1,0}→{1,−1}I(t)=b2nφ1(t)Even bitsQ(t)=b2n+1φ2(t)Odd bitsx(t)=Ac[I(t)cos(2πfct)−Q(t)sin(2πfct)]\begin{align*}
\text{Symbol mapping: }& \left\{1,0\right\}\to\left\{1,-1\right\}\\
I(t) &= b_{2n}\varphi_1(t)\quad\text{Even bits}\\
Q(t) &= b_{2n+1}\varphi_2(t)\quad\text{Odd bits}\\
x(t) &= A_c[I(t)\cos(2\pi f_c t)-Q(t)\sin(2\pi f_c t)]
\end{align*}
Symbol mapping: I(t)Q(t)x(t){1,0}→{1,−1}=b2nφ1(t)Even bits=b2n+1φ2(t)Odd bits=Ac[I(t)cos(2πfct)−Q(t)sin(2πfct)]Example of waveform
Code
tBitstream[bitstream_, Tb_, title_] :=
Module[{timeSteps, gridLines, plot},
timeSteps =
Flatten[Table[{(n - 1) Tb, bitstream[[n]]}, {n, 1,
Length[bitstream]}] /. {t_, v_} :> { {t, v}, {t + Tb, v}}, 1];
gridLines = {Join[
Table[{n Tb, Dashed}, {n, 1, 2 Length[bitstream], 2}],
Table[{n Tb, Thin}, {n, 0, 2 Length[bitstream], 2}]], None};
plot =
Labeled[ListLinePlot[timeSteps, InterpolationOrder -> 0,
PlotRange -> Full, GridLines -> gridLines, PlotStyle -> Thick,
Ticks -> {Table[{n Tb,
Row[{n, "\!\(\*SubscriptBox[\(T\), \(b\)]\)"}]}, {n, 0,
Length[bitstream]}], {-1, 0, 1}},
LabelStyle -> Directive[Bold, 12],
PlotRangePadding -> {Scaled[.05]}, AspectRatio -> 0.1,
ImageSize -> Large], {Style[title, "Text", 16]}, {Right}]];tBitstream[{0, 1, 0, 0, 1, 0, 1, 1, 1, 0}, 1, "Bitstream Step Plot"]
tBitstream[{-1, -1, -1, -1, 1, 1, 1, 1, 1, 1}, 1, "I(t)"]
tBitstream[{1, 1, -1, -1, -1, -1, 1, 1, -1, -1}, 1, "Q(t)"]Remember that T=2TbT=2T_bT=2Tb
bnb_nbn
I(t)I(t)I(t) (Odd, 1st bits)
Q(t)Q(t)Q(t) (Even, 2nd bits)
Matched filter
1. Filter function
Find transfer function h(t)h(t)h(t) of matched filter and apply to an input:
Note that x(T−t)x(T-t)x(T−t) is equivalent to horizontally flipping x(t)x(t)x(t) around x=T/2x=T/2x=T/2.h(t)=s1(T−t)−s2(T−t)h(t)=s∗(T−t)((.)* is the conjugate)son(t)=h(t)∗sn(t)=∫∞∞h(τ)sn(t−τ)dτFilter outputno(t)=h(t)∗n(t)Noise at filter output\begin{align*}
h(t)&=s_1(T-t)-s_2(T-t)\\
h(t)&=s^*(T-t) \qquad\text{((.)* is the conjugate)}\\
s_{on}(t)&=h(t)*s_n(t)=\int_\infty^\infty h(\tau)s_n(t-\tau)d\tau\quad\text{Filter output}\\
n_o(t)&=h(t)*n(t)\quad\text{Noise at filter output}
\end{align*}
h(t)h(t)son(t)no(t)=s1(T−t)−s2(T−t)=s∗(T−t)((.)* is the conjugate)=h(t)∗sn(t)=∫∞∞h(τ)sn(t−τ)dτFilter output=h(t)∗n(t)Noise at filter output2. Bit error rate of matched filter
Bit error rate (BER) from matched filter outputs and filter output noise
Q(x)=12−12erf(x2)⇔erf(x2)=1−2Q(x)Eb=d2=∫−∞∞∣s1(t)−s2(t)∣2dtEnergy per bit/DistanceT=1/RbRb: BitrateEb=PavT=Pav/RbEnergy per bitPav=Eb/T=EbRbAverage powerP(W)=10P(dB)10PRX(W)=PTX(W)⋅10Ploss(dB)10Ploss is expressed with negative sign e.g. "-130 dB"BERMatchedFilter=Q(d22N0)=Q(Eb2N0)BERunipolarNRZ|BASK=Q(d2N0)=Q(EbN0)BERpolarNRZ|BPSK=Q(2d2N0)=Q(2EbN0)\begin{align*}
Q(x)&=\frac{1}{2}-\frac{1}{2}\text{erf}\left(\frac{x}{\sqrt{2}}\right)\Leftrightarrow\text{erf}\left(\frac{x}{\sqrt{2}}\right)=1-2Q(x)\\
E_b&=d^2=\int_{-\infty}^\infty|s_1(t)-s_2(t)|^2dt\quad\text{Energy per bit/Distance}\\
T&=1/R_b\quad\text{$R_b$: Bitrate}\\
E_b&=P_\text{av}T=P_\text{av}/R_b\quad\text{Energy per bit}\\
P_\text{av}&=E_b/T=E_bR_b\quad\text{Average power}\\
P(\text{W})&=10^{\frac{P(\text{dB})}{10}}\\
P_\text{RX}(W)&=P_\text{TX}(W)\cdot10^{\frac{P_\text{loss}(\text{dB})}{10}}\quad \text{$P_\text{loss}$ is expressed with negative sign e.g. "-130 dB"}\\
\text{BER}_\text{MatchedFilter}&=Q\left(\sqrt{\frac{d^2}{2N_0}}\right)=Q\left(\sqrt{\frac{E_b}{2N_0}}\right)\\
\text{BER}_\text{unipolarNRZ|BASK}&=Q\left(\sqrt{\frac{d^2}{N_0}}\right)=Q\left(\sqrt{\frac{E_b}{N_0}}\right)\\
\text{BER}_\text{polarNRZ|BPSK}&=Q\left(\sqrt{\frac{2d^2}{N_0}}\right)=Q\left(\sqrt{\frac{2E_b}{N_0}}\right)\\
\end{align*}
Q(x)EbTEbPavP(W)PRX(W)BERMatchedFilterBERunipolarNRZ|BASKBERpolarNRZ|BPSK=21−21erf(2x)⇔erf(2x)=1−2Q(x)=d2=∫−∞∞∣s1(t)−s2(t)∣2dtEnergy per bit/Distance=1/RbRb: Bitrate=PavT=Pav/RbEnergy per bit=Eb/T=EbRbAverage power=1010P(dB)=PTX(W)⋅1010Ploss(dB)Ploss is expressed with negative sign e.g. "-130 dB"=Q2N0d2=Q(2N0Eb)=QN0d2=Q(N0Eb)=QN02d2=Q(N02Eb)Value tables for erf(x)\text{erf}(x)erf(x) and Q(x)Q(x)Q(x)
Q(x)Q(x)Q(x) functionYou should use erf\text{erf}erf function table instead in exams using the identity Q(x)=12−12erf(x2)Q(x)=\frac{1}{2}-\frac{1}{2}\text{erf}\left(\frac{x}{\sqrt{2}}\right)Q(x)=21−21erf(2x). Use this for validation.
xxx
Q(x)Q(x)Q(x)
xxx
Q(x)Q(x)Q(x)
xxx
Q(x)Q(x)Q(x)
xxx
Q(x)Q(x)Q(x)0.000.000.00
0.50.50.5
2.302.302.30
0.0107240.0107240.010724
4.554.554.55
2.6823×10−62.6823 \times 10^{-6}2.6823×10−6
6.806.806.80
5.231×10−125.231 \times 10^{-12}5.231×10−120.050.050.05
0.480060.480060.48006
2.352.352.35
0.00938670.00938670.0093867
4.604.604.60
2.1125×10−62.1125 \times 10^{-6}2.1125×10−6
6.856.856.85
3.6925×10−123.6925 \times 10^{-12}3.6925×10−120.100.100.10
0.460170.460170.46017
2.402.402.40
0.00819750.00819750.0081975
4.654.654.65
1.6597×10−61.6597 \times 10^{-6}1.6597×10−6
6.906.906.90
2.6001×10−122.6001 \times 10^{-12}2.6001×10−120.150.150.15
0.440380.440380.44038
2.452.452.45
0.00714280.00714280.0071428
4.704.704.70
1.3008×10−61.3008 \times 10^{-6}1.3008×10−6
6.956.956.95
1.8264×10−121.8264 \times 10^{-12}1.8264×10−120.200.200.20
0.420740.420740.42074
2.502.502.50
0.00620970.00620970.0062097
4.754.754.75
1.0171×10−61.0171 \times 10^{-6}1.0171×10−6
7.007.007.00
1.2798×10−121.2798 \times 10^{-12}1.2798×10−120.250.250.25
0.401290.401290.40129
2.552.552.55
0.00538610.00538610.0053861
4.804.804.80
7.9333×10−77.9333 \times 10^{-7}7.9333×10−7
7.057.057.05
8.9459×10−138.9459 \times 10^{-13}8.9459×10−130.300.300.30
0.382090.382090.38209
2.602.602.60
0.00466120.00466120.0046612
4.854.854.85
6.1731×10−76.1731 \times 10^{-7}6.1731×10−7
7.107.107.10
6.2378×10−136.2378 \times 10^{-13}6.2378×10−130.350.350.35
0.363170.363170.36317
2.652.652.65
0.00402460.00402460.0040246
4.904.904.90
4.7918×10−74.7918 \times 10^{-7}4.7918×10−7
7.157.157.15
4.3389×10−134.3389 \times 10^{-13}4.3389×10−130.400.400.40
0.344580.344580.34458
2.702.702.70
0.0034670.0034670.003467
4.954.954.95
3.7107×10−73.7107 \times 10^{-7}3.7107×10−7
7.207.207.20
3.0106×10−133.0106 \times 10^{-13}3.0106×10−130.450.450.45
0.326360.326360.32636
2.752.752.75
0.00297980.00297980.0029798
5.005.005.00
2.8665×10−72.8665 \times 10^{-7}2.8665×10−7
7.257.257.25
2.0839×10−132.0839 \times 10^{-13}2.0839×10−130.500.500.50
0.308540.308540.30854
2.802.802.80
0.00255510.00255510.0025551
5.055.055.05
2.2091×10−72.2091 \times 10^{-7}2.2091×10−7
7.307.307.30
1.4388×10−131.4388 \times 10^{-13}1.4388×10−130.550.550.55
0.291160.291160.29116
2.852.852.85
0.0021860.0021860.002186
5.105.105.10
1.6983×10−71.6983 \times 10^{-7}1.6983×10−7
7.357.357.35
9.9103×10−149.9103 \times 10^{-14}9.9103×10−140.600.600.60
0.274250.274250.27425
2.902.902.90
0.00186580.00186580.0018658
5.155.155.15
1.3024×10−71.3024 \times 10^{-7}1.3024×10−7
7.407.407.40
6.8092×10−146.8092 \times 10^{-14}6.8092×10−140.650.650.65
0.257850.257850.25785
2.952.952.95
0.00158890.00158890.0015889
5.205.205.20
9.9644×10−89.9644 \times 10^{-8}9.9644×10−8
7.457.457.45
4.667×10−144.667 \times 10^{-14}4.667×10−140.700.700.70
0.241960.241960.24196
3.003.003.00
0.00134990.00134990.0013499
5.255.255.25
7.605×10−87.605 \times 10^{-8}7.605×10−8
7.507.507.50
3.1909×10−143.1909 \times 10^{-14}3.1909×10−140.750.750.75
0.226630.226630.22663
3.053.053.05
0.00114420.00114420.0011442
5.305.305.30
5.7901×10−85.7901 \times 10^{-8}5.7901×10−8
7.557.557.55
2.1763×10−142.1763 \times 10^{-14}2.1763×10−140.800.800.80
0.211860.211860.21186
3.103.103.10
0.00096760.00096760.0009676
5.355.355.35
4.3977×10−84.3977 \times 10^{-8}4.3977×10−8
7.607.607.60
1.4807×10−141.4807 \times 10^{-14}1.4807×10−140.850.850.85
0.197660.197660.19766
3.153.153.15
0.000816350.000816350.00081635
5.405.405.40
3.332×10−83.332 \times 10^{-8}3.332×10−8
7.657.657.65
1.0049×10−141.0049 \times 10^{-14}1.0049×10−140.900.900.90
0.184060.184060.18406
3.203.203.20
0.000687140.000687140.00068714
5.455.455.45
2.5185×10−82.5185 \times 10^{-8}2.5185×10−8
7.707.707.70
6.8033×10−156.8033 \times 10^{-15}6.8033×10−150.950.950.95
0.171060.171060.17106
3.253.253.25
0.000577030.000577030.00057703
5.505.505.50
1.899×10−81.899 \times 10^{-8}1.899×10−8
7.757.757.75
4.5946×10−154.5946 \times 10^{-15}4.5946×10−151.001.001.00
0.158660.158660.15866
3.303.303.30
0.000483420.000483420.00048342
5.555.555.55
1.4283×10−81.4283 \times 10^{-8}1.4283×10−8
7.807.807.80
3.0954×10−153.0954 \times 10^{-15}3.0954×10−151.051.051.05
0.146860.146860.14686
3.353.353.35
0.000404060.000404060.00040406
5.605.605.60
1.0718×10−81.0718 \times 10^{-8}1.0718×10−8
7.857.857.85
2.0802×10−152.0802 \times 10^{-15}2.0802×10−151.101.101.10
0.135670.135670.13567
3.403.403.40
0.000336930.000336930.00033693
5.655.655.65
8.0224×10−98.0224 \times 10^{-9}8.0224×10−9
7.907.907.90
1.3945×10−151.3945 \times 10^{-15}1.3945×10−151.151.151.15
0.125070.125070.12507
3.453.453.45
0.000280290.000280290.00028029
5.705.705.70
5.9904×10−35.9904 \times 10^{-3}5.9904×10−3
7.957.957.95
9.3256×10−169.3256 \times 10^{-16}9.3256×10−161.201.201.20
0.115070.115070.11507
3.503.503.50
0.000232630.000232630.00023263
5.755.755.75
4.4622×10−94.4622 \times 10^{-9}4.4622×10−9
8.008.008.00
6.221×10−166.221 \times 10^{-16}6.221×10−161.251.251.25
0.105650.105650.10565
3.553.553.55
0.000192620.000192620.00019262
5.805.805.80
3.3157×10−93.3157 \times 10^{-9}3.3157×10−9
8.058.058.05
4.1397×10−164.1397 \times 10^{-16}4.1397×10−161.301.301.30
0.09680.09680.0968
3.603.603.60
0.000159110.000159110.00015911
5.855.855.85
2.4579×10−92.4579 \times 10^{-9}2.4579×10−9
8.108.108.10
2.748×10−162.748 \times 10^{-16}2.748×10−161.351.351.35
0.0885080.0885080.088508
3.653.653.65
0.000131120.000131120.00013112
5.905.905.90
1.8175×10−91.8175 \times 10^{-9}1.8175×10−9
8.158.158.15
1.8196×10−161.8196 \times 10^{-16}1.8196×10−161.401.401.40
0.0807570.0807570.080757
3.703.703.70
0.00010780.00010780.0001078
5.955.955.95
1.3407×10−91.3407 \times 10^{-9}1.3407×10−9
8.208.208.20
1.2019×10−161.2019 \times 10^{-16}1.2019×10−161.451.451.45
0.0735290.0735290.073529
3.753.753.75
8.8417×10−58.8417 \times 10^{-5}8.8417×10−5
6.006.006.00
9.8659×10−109.8659 \times 10^{-10}9.8659×10−10
8.258.258.25
7.9197×10−177.9197 \times 10^{-17}7.9197×10−171.501.501.50
0.0668070.0668070.066807
3.803.803.80
7.2348×10−57.2348 \times 10^{-5}7.2348×10−5
6.056.056.05
7.2423×10−107.2423 \times 10^{-10}7.2423×10−10
8.308.308.30
5.2056×10−175.2056 \times 10^{-17}5.2056×10−171.551.551.55
0.0605710.0605710.060571
3.853.853.85
5.9059×10−55.9059 \times 10^{-5}5.9059×10−5
6.106.106.10
5.3034×10−105.3034 \times 10^{-10}5.3034×10−10
8.358.358.35
3.4131×10−173.4131 \times 10^{-17}3.4131×10−171.601.601.60
0.0547990.0547990.054799
3.903.903.90
4.8096×10−54.8096 \times 10^{-5}4.8096×10−5
6.156.156.15
3.8741×10−103.8741 \times 10^{-10}3.8741×10−10
8.408.408.40
2.2324×10−172.2324 \times 10^{-17}2.2324×10−171.651.651.65
0.0494710.0494710.049471
3.953.953.95
3.9076×10−53.9076 \times 10^{-5}3.9076×10−5
6.206.206.20
2.8232×10−102.8232 \times 10^{-10}2.8232×10−10
8.458.458.45
1.4565×10−171.4565 \times 10^{-17}1.4565×10−171.701.701.70
0.0445650.0445650.044565
4.004.004.00
3.1671×10−53.1671 \times 10^{-5}3.1671×10−5
6.256.256.25
2.0523×10−102.0523 \times 10^{-10}2.0523×10−10
8.508.508.50
9.4795×10−189.4795 \times 10^{-18}9.4795×10−181.751.751.75
0.0400590.0400590.040059
4.054.054.05
2.5609×10−52.5609 \times 10^{-5}2.5609×10−5
6.306.306.30
1.4882×10−101.4882 \times 10^{-10}1.4882×10−10
8.558.558.55
6.1544×10−186.1544 \times 10^{-18}6.1544×10−181.801.801.80
0.035930.035930.03593
4.104.104.10
2.0658×10−52.0658 \times 10^{-5}2.0658×10−5
6.356.356.35
1.0766×10−101.0766 \times 10^{-10}1.0766×10−10
8.608.608.60
3.9858×10−183.9858 \times 10^{-18}3.9858×10−181.851.851.85
0.0321570.0321570.032157
4.154.154.15
1.6624×10−51.6624 \times 10^{-5}1.6624×10−5
6.406.406.40
7.7688×10−117.7688 \times 10^{-11}7.7688×10−11
8.658.658.65
2.575×10−182.575 \times 10^{-18}2.575×10−181.901.901.90
0.0287170.0287170.028717
4.204.204.20
1.3346×10−51.3346 \times 10^{-5}1.3346×10−5
6.456.456.45
5.5925×10−115.5925 \times 10^{-11}5.5925×10−11
8.708.708.70
1.6594×10−181.6594 \times 10^{-18}1.6594×10−181.951.951.95
0.0255880.0255880.025588
4.254.254.25
1.0689×10−51.0689 \times 10^{-5}1.0689×10−5
6.506.506.50
4.016×10−114.016 \times 10^{-11}4.016×10−11
8.758.758.75
1.0668×10−181.0668 \times 10^{-18}1.0668×10−182.002.002.00
0.022750.022750.02275
4.304.304.30
8.5399×10−68.5399 \times 10^{-6}8.5399×10−6
6.556.556.55
2.8769×10−112.8769 \times 10^{-11}2.8769×10−11
8.808.808.80
6.8408×10−196.8408 \times 10^{-19}6.8408×10−192.052.052.05
0.0201820.0201820.020182
4.354.354.35
6.8069×10−66.8069 \times 10^{-6}6.8069×10−6
6.606.606.60
2.0558×10−112.0558 \times 10^{-11}2.0558×10−11
8.858.858.85
4.376×10−194.376 \times 10^{-19}4.376×10−192.102.102.10
0.0178640.0178640.017864
4.404.404.40
5.4125×10−65.4125 \times 10^{-6}5.4125×10−6
6.656.656.65
1.4655×10−111.4655 \times 10^{-11}1.4655×10−11
8.908.908.90
2.7923×10−192.7923 \times 10^{-19}2.7923×10−192.152.152.15
0.0157780.0157780.015778
4.454.454.45
4.2935×10−64.2935 \times 10^{-6}4.2935×10−6
6.706.706.70
1.0421×10−111.0421 \times 10^{-11}1.0421×10−11
8.958.958.95
1.7774×10−191.7774 \times 10^{-19}1.7774×10−192.202.202.20
0.0139030.0139030.013903
4.504.504.50
3.3977×10−63.3977 \times 10^{-6}3.3977×10−6
6.756.756.75
7.3923×10−127.3923 \times 10^{-12}7.3923×10−12
9.009.009.00
1.1286×10−191.1286 \times 10^{-19}1.1286×10−192.252.252.25
0.0122240.0122240.012224Adapted from table 6.1 M F Mesiya - Contemporary Communication Systems
erf(x)\text{erf}(x)erf(x) functionQ(x)=12−12erf(x2)Q(x)=\frac{1}{2}-\frac{1}{2}\text{erf}(\frac{x}{\sqrt{2}})
Q(x)=21−21erf(2x)xxx
erf(x)\text{erf}(x)erf(x)
xxx
erf(x)\text{erf}(x)erf(x)
xxx
erf(x)\text{erf}(x)erf(x)0.000.000.00
0.000000.000000.00000
0.750.750.75
0.711160.711160.71116
1.501.501.50
0.966110.966110.966110.050.050.05
0.056370.056370.05637
0.800.800.80
0.742100.742100.74210
1.551.551.55
0.971620.971620.971620.100.100.10
0.112460.112460.11246
0.850.850.85
0.770670.770670.77067
1.601.601.60
0.976350.976350.976350.150.150.15
0.168000.168000.16800
0.900.900.90
0.796910.796910.79691
1.651.651.65
0.980380.980380.980380.200.200.20
0.222700.222700.22270
0.950.950.95
0.820890.820890.82089
1.701.701.70
0.983790.983790.983790.250.250.25
0.276330.276330.27633
1.001.001.00
0.842700.842700.84270
1.751.751.75
0.986670.986670.986670.300.300.30
0.328630.328630.32863
1.051.051.05
0.862440.862440.86244
1.801.801.80
0.989090.989090.989090.350.350.35
0.379380.379380.37938
1.101.101.10
0.880210.880210.88021
1.851.851.85
0.991110.991110.991110.400.400.40
0.428390.428390.42839
1.151.151.15
0.896120.896120.89612
1.901.901.90
0.992790.992790.992790.450.450.45
0.475480.475480.47548
1.201.201.20
0.910310.910310.91031
1.951.951.95
0.994180.994180.994180.500.500.50
0.520500.520500.52050
1.251.251.25
0.922900.922900.92290
2.002.002.00
0.995320.995320.995320.550.550.55
0.563320.563320.56332
1.301.301.30
0.934010.934010.93401
2.502.502.50
0.999590.999590.999590.600.600.60
0.603860.603860.60386
1.351.351.35
0.943760.943760.94376
3.003.003.00
0.999980.999980.999980.650.650.65
0.642030.642030.64203
1.401.401.40
0.952290.952290.95229
3.303.303.30
0.9999980.9999980.999998**0.700.700.70
0.677800.677800.67780
1.451.451.45
0.959700.959700.95970**The value of erf(3.30)\text{erf}(3.30)erf(3.30) should be ≈0.999997\approx0.999997≈0.999997 instead, but this value is quoted in the formula table.
Q(x)Q(x)Q(x) fast referenceUsing identity.
xxx
Q(x)Q(x)Q(x)2\sqrt{2}2
0.078650.078650.07865222\sqrt{2}22
0.002340.002340.00234Receiver output shit
ro(t)={so1(t)+no(t)code 1so2(t)+no(t)code 0n:AWGN with σo2\begin{align*}
r_o(t)&=\begin{cases}
s_{o1}(t)+n_o(t) & \text{code 1}\\
s_{o2}(t)+n_o(t) & \text{code 0}\\
\end{cases}\\
n&: \text{AWGN with }\sigma_o^2\\
\end{align*}
ro(t)n={so1(t)+no(t)so2(t)+no(t)code 1code 0:AWGN with σo2ISI, channel model
Raised cosine (RC) pulse
0≤α≤10\leq\alpha\leq1
0≤α≤1⚠ NOTE might not be safe to assume T′=TT'=TT′=T, if you can solve the question without TTT then use that method.
Nyquist criterion for zero ISI
D>2WUse W from table below depending on modulation scheme.BNyquist=W1+αα=Excess BWBNyquist=Babs−BNyquistBNyquist\begin{align*}
D &> 2W\quad\text{Use $W$ from table below depending on modulation scheme.}\\
B_\text{Nyquist} &= \frac{W}{1+\alpha}\\
\alpha&=\frac{\text{Excess BW}}{B_\text{Nyquist}}=\frac{B_\text{abs}-B_\text{Nyquist}}{B_\text{Nyquist}}\\
\end{align*}
DBNyquistα>2WUse W from table below depending on modulation scheme.=1+αW=BNyquistExcess BW=BNyquistBabs−BNyquistNomenclature
D→Symbol Rate, Max. Signalling RateT→Symbol DurationM→Symbol set sizeW→Bandwidth\begin{align*}
D&\rightarrow\text{Symbol Rate, Max. Signalling Rate}\\
T&\rightarrow\text{Symbol Duration}\\
M&\rightarrow\text{Symbol set size}\\
W&\rightarrow\text{Bandwidth}\\
\end{align*}
DTMW→Symbol Rate, Max. Signalling Rate→Symbol Duration→Symbol set size→BandwidthBandwidth WWW and bit error rate of modulation schemes
To solve this type of question:
- Use the formula for DDD below
- Consult the BER table below to get the BER which relates the noise of the channel N0N_0N0 to EbE_bEb and to RbR_bRb.
Linear modulation
HalfBPSK, QPSK, MMM-PSK, MMM-QAM, ASK, FSK
MMM-PAM, PAMRZ unipolar, Manchester
NRZ Unipolar, NRZ Polar, Bipolar RZW=Babs-absW=B_\text{\color{green}abs-abs}W=Babs-abs
W=BabsW=B_\text{\color{green}abs}W=BabsW=Babs-abs=1+αT=(1+α)DW=B_\text{abs-abs}=\frac{1+\alpha}{T}=(1+\alpha)DW=Babs-abs=T1+α=(1+α)D
W=Babs=1+α2T=(1+α)D/2W=B_\text{abs}=\frac{1+\alpha}{2T}=(1+\alpha)D/2W=Babs=2T1+α=(1+α)D/2D=W symbol/s1+αD=\frac{W\text{ symbol/s}}{1+\alpha}D=1+αW symbol/s
D=2W symbol/s1+αD=\frac{2W\text{ symbol/s}}{1+\alpha}D=1+α2W symbol/sRb bit/s=(D symbol/s)×(k bit/symbol)M symbol/set=2kT s/symbol=1/(D symbol/s)Eb=PT=Pav/RbEnergy per bit\begin{align*}
R_b\text{ bit/s}&=(D\text{ symbol/s})\times(k\text{ bit/symbol})\\
M\text{ symbol/set}&=2^k\\
T\text{ s/symbol}&=1/(D\text{ symbol/s})\\
E_b&=PT=P_\text{av}/R_b\quad\text{Energy per bit}\\
\end{align*}
Rb bit/sM symbol/setT s/symbolEb=(D symbol/s)×(k bit/symbol)=2k=1/(D symbol/s)=PT=Pav/RbEnergy per bitTable of bandpass signalling and BER
Binary Bandpass Signaling
Bnull-nullB_\text{null-null}Bnull-null (Hz)
Babs-abs=2BabsB_\text{abs-abs}\color{red}=2B_\text{abs}Babs-abs=2Babs (Hz)
BER with Coherent Detection
BER with Noncoherent DetectionASK, unipolar NRZ
2Rb2R_b2Rb
Rb(1+α)R_b (1 + \alpha)Rb(1+α)
Q(Eb/N0)Q\left( \sqrt{E_b / N_0} \right)Q(Eb/N0)
0.5exp(−Eb/(2N0))0.5\exp(-E_b / (2N_0))0.5exp(−Eb/(2N0))BPSK
2Rb2R_b2Rb
Rb(1+α)R_b (1 + \alpha)Rb(1+α)
Q(2Eb/N0)Q\left( \sqrt{2E_b / N_0} \right)Q(2Eb/N0)
Requires coherent detectionSunde's FSK
3Rb3R_b3RbQ(Eb/N0)Q\left( \sqrt{E_b / N_0} \right)Q(Eb/N0)
0.5exp(−Eb/(2N0))0.5\exp(-E_b / (2N_0))0.5exp(−Eb/(2N0))DBPSK, MMM-ary Bandpass Signaling
2Rb2R_b2Rb
Rb(1+α)R_b (1 + \alpha)Rb(1+α)0.5exp(−Eb/N0)0.5\exp(-E_b / N_0)0.5exp(−Eb/N0)
QPSK/OQPSK (M=4M=4M=4, PSK)
RbR_bRb
Rb(1+α)2\frac{R_b (1 + \alpha)}{2}2Rb(1+α)
Q(2Eb/N0)Q\left( \sqrt{2E_b / N_0} \right)Q(2Eb/N0)
Requires coherent detectionMSK
1.5Rb1.5R_b1.5Rb
3Rb(1+α)4\frac{3R_b (1 + \alpha)}{4}43Rb(1+α)
Q(2Eb/N0)Q\left( \sqrt{2E_b / N_0} \right)Q(2Eb/N0)
Requires coherent detectionMMM-PSK (M>4M > 4M>4)
2Rb/log2M2R_b / \log_2 M2Rb/log2M
Rb(1+α)log2M\frac{R_b (1 + \alpha)}{\log_2 M}log2MRb(1+α)
2log2MQ(2log2Msin2(π/M)Eb/N0)\frac{2}{\log_2 M} Q\left( \sqrt{2 \log_2 M \sin^2 \left( \pi / M \right) E_b / N_0} \right)log2M2Q(2log2Msin2(π/M)Eb/N0)
Requires coherent detectionMMM-DPSK (M>4M > 4M>4)
2Rb/log2M2R_b / \log_2 M2Rb/log2M
Rb(1+α)2log2M\frac{R_b (1 + \alpha)}{2 \log_2 M}2log2MRb(1+α)2log2MQ(4log2Msin2(π/(2M))Eb/N0)\frac{2}{\log_2 M} Q\left( \sqrt{4 \log_2 M \sin^2 \left( \pi / (2M) \right) E_b / N_0} \right)log2M2Q(4log2Msin2(π/(2M))Eb/N0)
MMM-QAM (Square constellation)
2Rb/log2M2R_b / \log_2 M2Rb/log2M
Rb(1+α)log2M\frac{R_b (1 + \alpha)}{\log_2 M}log2MRb(1+α)
4log2M(1−1M)Q(3log2MM−1Eb/N0)\frac{4}{\log_2 M} \left( 1 - \frac{1}{\sqrt{M}} \right) Q\left( \sqrt{\frac{3 \log_2 M}{M - 1} E_b / N_0} \right)log2M4(1−M1)Q(M−13log2MEb/N0)
Requires coherent detectionMMM-FSK Coherent
(M+3)Rb2log2M\frac{(M + 3) R_b}{2 \log_2 M}2log2M(M+3)RbM−1log2MQ((log2M)Eb/N0)\frac{M - 1}{\log_2 M} Q\left( \sqrt{(\log_2 M) E_b / N_0} \right)log2MM−1Q((log2M)Eb/N0)
Noncoherent
2MRb/log2M2M R_b / \log_2 M2MRb/log2MM−12log2M0.5exp(−(log2M)Eb/2N0)\frac{M - 1}{2 \log_2 M} 0.5\exp({-(\log_2 M) E_b / 2N_0})2log2MM−10.5exp(−(log2M)Eb/2N0)
Adapted from table 11.4 M F Mesiya - Contemporary Communication Systems
PSD of modulated signals
Modulation
Gx(f)G_x(f)Gx(f)Quadrature
Ac24[GI(f−fc)+GI(f+fc)+GQ(f−fc)+GQ(f+fc)]\color{red}\frac{ {A_c}^2}{4}[G_I(f-f_c)+G_I(f+f_c)+G_Q(f-f_c)+G_Q(f+f_c)]4Ac2[GI(f−fc)+GI(f+fc)+GQ(f−fc)+GQ(f+fc)]Linear
∣V(f)∣22∑l=−∞∞R(l)exp(−j2πlfT)What??\color{red}\frac{|V(f)|^2}{2}\sum_{l=-\infty}^\infty R(l)\exp(-j2\pi l f T)\quad\text{What??}2∣V(f)∣2∑l=−∞∞R(l)exp(−j2πlfT)What??Symbol error probability
- Minimum distance between any two point
- Different from bit error since a symbol can contain multiple bits
Information theory
Stats
P(A∣B)=P(B∣A)P(A)P(B)=P(A,B)P(B)\begin{align*}
P(A|B) &= \frac{P(B|A)P(A)}{P(B)} = \frac{P(A,B)}{P(B)}\\
\end{align*}
P(A∣B)=P(B)P(B∣A)P(A)=P(B)P(A,B)
Entropy for discrete random variables
H(x)≥0H(x)=−∑xi∈AxpX(xi)log2(pX(xi))H(x,y)=−∑xi∈Ax∑yi∈AypXY(xi,yi)log2(pXY(xi,yi))Joint entropyH(x,y)=H(x)+H(y)Joint entropy if x and y independentH(x∣y=yj)=−∑xi∈AxpX(xi∣y=yj)log2(pX(xi∣y=yj))Conditional entropyH(x∣y)=−∑yj∈AypY(yj)H(x∣y=yj)Average conditional entropy, equivocationH(x∣y)=−∑xi∈Ax∑yi∈AypX(xi,yj)log2(pX(xi∣y=yj))H(x∣y)=H(x,y)−H(y)H(x,y)=H(x)+H(y∣x)=H(y)+H(x∣y)\begin{align*}
H(x) &\geq 0\\
H(x) &= -\sum_{x_i\in A_x} p_X(x_i) \log_2(p_X(x_i))\\
H(x,y) &= -\sum_{x_i\in A_x}\sum_{y_i\in A_y} p_{XY}(x_i,y_i)\log_2(p_{XY}(x_i,y_i)) \quad\text{Joint entropy}\\
H(x,y) &= H(x)+H(y) \quad\text{Joint entropy if $x$ and $y$ independent}\\
H(x|y=y_j) &= -\sum_{x_i\in A_x} p_X(x_i|y=y_j) \log_2(p_X(x_i|y=y_j)) \quad\text{Conditional entropy}\\
H(x|y) &= -\sum_{y_j\in A_y} p_Y(y_j) H(x|y=y_j) \quad\text{Average conditional entropy, equivocation}\\
H(x|y) &= -\sum_{x_i\in A_x}\sum_{y_i\in A_y} p_X(x_i,y_j) \log_2(p_X(x_i|y=y_j))\\
H(x|y) &= H(x,y)-H(y)\\
H(x,y) &= H(x) + H(y|x) = H(y) + H(x|y)\\
\end{align*}
H(x)H(x)H(x,y)H(x,y)H(x∣y=yj)H(x∣y)H(x∣y)H(x∣y)H(x,y)≥0=−xi∈Ax∑pX(xi)log2(pX(xi))=−xi∈Ax∑yi∈Ay∑pXY(xi,yi)log2(pXY(xi,yi))Joint entropy=H(x)+H(y)Joint entropy if x and y independent=−xi∈Ax∑pX(xi∣y=yj)log2(pX(xi∣y=yj))Conditional entropy=−yj∈Ay∑pY(yj)H(x∣y=yj)Average conditional entropy, equivocation=−xi∈Ax∑yi∈Ay∑pX(xi,yj)log2(pX(xi∣y=yj))=H(x,y)−H(y)=H(x)+H(y∣x)=H(y)+H(x∣y)
Entropy is maximized when all have an equal probability.
Transition probability diagram
Example for binary erasure channel where XXX is input and YYY is output:
Equivalent to:
P[Y=0∣X=0]=1−pP[Y=e∣X=0]=pP[Y=1∣X=1]=1−pP[Y=e∣X=1]=pP[X=0∣Y=0]=0Note the directionP[Y=0]=P[Y=0∣X=0]P[X=0]\begin{align*}
P[Y=0|X=0] &= 1-p\\
P[Y=e|X=0] &= p\\
P[Y=1|X=1] &= 1-p\\
P[Y=e|X=1] &= p\\
P[X=0|Y=0] &= 0\quad\text{Note the direction}\\
P[Y=0] &= P[Y=0|X=0] P[X=0]
\end{align*}
P[Y=0∣X=0]P[Y=e∣X=0]P[Y=1∣X=1]P[Y=e∣X=1]P[X=0∣Y=0]P[Y=0]=1−p=p=1−p=p=0Note the direction=P[Y=0∣X=0]P[X=0]
Mutual information
Amount of entropy decrease of xxx after observation by yyy.
I(x;y)=H(x)−H(x∣y)=H(y)−H(y∣x)\begin{align*}
I(x;y) &= H(x)-H(x|y)=H(y)-H(y|x)\\
\end{align*}
I(x;y)=H(x)−H(x∣y)=H(y)−H(y∣x)
Channel model
Vertical, xxx: input
Horizontal, yyy: output
Remember P\mathbf{P}P is a matrix where each element is P(yj∣xi)P(y_j|x_i)P(yj∣xi)
P=[p11p12…p1Np21p22…p2N⋮⋮⋱⋮pM1pM2…pMN]\mathbf{P}=\left[\begin{matrix}
p_{11} & p_{12} &\dots & p_{1N}\\
p_{21} & p_{22} &\dots & p_{2N}\\
\vdots & \vdots &\ddots & \vdots\\
p_{M1} & p_{M2} &\dots & p_{MN}\\
\end{matrix}\right]
P=p11p21⋮pM1p12p22⋮pM2……⋱…p1Np2N⋮pMN
P(yj∣xi)y1y2…yNx1p11p12…p1Nx2p21p22…p2N⋮⋮⋮⋱⋮xMpM1pM2…pMN\begin{array}{c|cccc}
P(y_j|x_i)& y_1 & y_2 & \dots & y_N \\\hline
x_1 & p_{11} & p_{12} & \dots & p_{1N} \\
x_2 & p_{21} & p_{22} & \dots & p_{2N} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_M & p_{M1} & p_{M2} & \dots & p_{MN} \\
\end{array}
P(yj∣xi)x1x2⋮xMy1p11p21⋮pM1y2p12p22⋮pM2………⋱…yNp1Np2N⋮pMN
Input has probability distribution pX(ai)=P(X=ai)p_X(a_i)=P(X=a_i)pX(ai)=P(X=ai)
Channel maps alphabet ‘{a1,…,aM}→{b1,…,bN}‘`\{a_1,\dots,a_M\} \to \{b_1,\dots,b_N\}`‘{a1,…,aM}→{b1,…,bN}‘
Output has probability distribution pY(bj)=P(y=bj)p_Y(b_j)=P(y=b_j)pY(bj)=P(y=bj)
pY(bj)=∑i=1MP[x=ai,y=bj]1≤j≤N=∑i=1MP[X=ai]P[Y=bj∣X=ai][pY(b0)pY(b1)…pY(bj)]=[pX(a0)pX(a1)…pX(ai)]×P\begin{align*}
p_Y(b_j) &= \sum_{i=1}^{M}P[x=a_i,y=b_j]\quad 1\leq j\leq N \\
&= \sum_{i=1}^{M}P[X=a_i]P[Y=b_j|X=a_i]\\
[\begin{matrix}p_Y(b_0)&p_Y(b_1)&\dots&p_Y(b_j)\end{matrix}] &= [\begin{matrix}p_X(a_0)&p_X(a_1)&\dots&p_X(a_i)\end{matrix}]\times\mathbf{P}
\end{align*}
pY(bj)[pY(b0)pY(b1)…pY(bj)]=i=1∑MP[x=ai,y=bj]1≤j≤N=i=1∑MP[X=ai]P[Y=bj∣X=ai]=[pX(a0)pX(a1)…pX(ai)]×P
Fast procedure to calculate I(y;x)I(y;x)I(y;x)
1. Find H(x)2. Find [pY(b0)pY(b1)…pY(bj)]=[pX(a0)pX(a1)…pX(ai)]×P3. Multiply each row in P by pX(ai) since pXY(ai,bi)=P(bi∣ai)P(ai)4. Find H(x,y) using each element from (3.)5. Find H(x∣y)=H(x,y)−H(y)6. Find I(x;y)=H(x)−H(x∣y)\begin{align*}
&\text{1. Find }H(x)\\
&\text{2. Find }[\begin{matrix}p_Y(b_0)&p_Y(b_1)&\dots&p_Y(b_j)\end{matrix}] = [\begin{matrix}p_X(a_0)&p_X(a_1)&\dots&p_X(a_i)\end{matrix}]\times\mathbf{P}\\
&\text{3. Multiply each row in $\textbf{P}$ by $p_X(a_i)$ since $p_{XY}(a_i,b_i)=P(b_i|a_i)P(a_i)$}\\
&\text{4. Find $H(x,y)$ using each element from (3.)}\\
&\text{5. Find }H(x|y)=H(x,y)-H(y)\\
&\text{6. Find }I(x;y)=H(x)-H(x|y)\\
\end{align*}
1. Find H(x)2. Find [pY(b0)pY(b1)…pY(bj)]=[pX(a0)pX(a1)…pX(ai)]×P3. Multiply each row in P by pX(ai) since pXY(ai,bi)=P(bi∣ai)P(ai)4. Find H(x,y) using each element from (3.)5. Find H(x∣y)=H(x,y)−H(y)6. Find I(x;y)=H(x)−H(x∣y)
Example of step 3:
PXY=[P(y1∣x1)P(x1)P(y2∣x1)P(x1)…P(y1∣x2)P(x2)P(y2∣x2)P(x2)…⋮⋮⋱]\mathbf{P_{XY}}=\left[\begin{matrix}
P(y_1|x_1) P(x_1) & P(y_2|x_1) P(x_1) & \dots\\
P(y_1|x_2) P(x_2) & P(y_2|x_2) P(x_2) & \dots\\
\vdots & \vdots &\ddots
\end{matrix}\right]
PXY=P(y1∣x1)P(x1)P(y1∣x2)P(x2)⋮P(y2∣x1)P(x1)P(y2∣x2)P(x2)⋮……⋱
Channel types
Type
Definition
Symmetric channel
Every row is a permutation of every other row, Every column is a permutation of every other column. Symmetric ⟹ Weakly symmetric\text{Symmetric}\implies\text{Weakly symmetric}Symmetric⟹Weakly symmetric
Weakly symmetric
Every row is a permutation of every other row, Every column has the same sum
Channel capacity of weakly symmetric channel
C→Channel capacity (bits/channels used)N→Output alphabet sizep→Probability vector, any row of the transition matrixC=log2(N)−H(p)Capacity for weakly symmetric and symmetric channelsRb<C for error-free transmission\begin{align*}
C &\to\text{Channel capacity (bits/channels used)}\\
N &\to\text{Output alphabet size}\\
\mathbf{p} &\to\text{Probability vector, any row of the transition matrix}\\
C &= \log_2(N)-H(\mathbf{p})\quad\text{Capacity for weakly symmetric and symmetric channels}\\
R_b &< C \text{ for error-free transmission}
\end{align*}
CNpCRb→Channel capacity (bits/channels used)→Output alphabet size→Probability vector, any row of the transition matrix=log2(N)−H(p)Capacity for weakly symmetric and symmetric channels<C for error-free transmission
Note that the channel capacity is realized when the channel inputs are uniformly distributed (i.e. P(x1)=P(x2)=⋯=P(xN)=1NP(x_1)=P(x_2)=\dots=P(x_N)=\frac{1}{N}P(x1)=P(x2)=⋯=P(xN)=N1)
Channel capacity of an AWGN channel
yi=xi+nini∼N(0,N0/2)y_i=x_i+n_i\quad n_i\thicksim N(0,N_0/2)
yi=xi+nini∼N(0,N0/2)
C=12log2(1+PavN0/2)C=\frac{1}{2}\log_2\left(1+\frac{P_\text{av}}{N_0/2}\right)
C=21log2(1+N0/2Pav)
Channel capacity of a bandwidth limited AWGN channel
Ps→Bandwidth limited average poweryi=bandpassW(xi)+nini∼N(0,N0/2)C=Wlog2(1+PsN0W)C=Wlog2(1+SNR)SNR=Ps/(N0W)\begin{align*}
P_s&\to\text{Bandwidth limited average power}\\
y_i&=\text{bandpass}_W(x_i)+n_i\quad n_i\thicksim N(0,N_0/2)\\
C&=W\log_2\left(1+\frac{P_s}{N_0 W}\right)\\
C&=W\log_2(1+\text{SNR})\\
\text{SNR}&=P_s/(N_0 W)
\end{align*}
PsyiCCSNR→Bandwidth limited average power=bandpassW(xi)+nini∼N(0,N0/2)=Wlog2(1+N0WPs)=Wlog2(1+SNR)=Ps/(N0W)
Shannon limit
Rb<C ⟹ Rb<Wlog2(1+PsN0W)For bandwidth limited AWGN channelEbN0>2η−1ηSNR per bit required for error-free transmissionη=RbWSpectral efficiency (bit/(s-Hz))η≫1Bandwidth limitedη≪1Power limited\begin{align*}
R_b &< C\\
\implies R_b &< W\log_2\left(1+\frac{P_s}{N_0 W}\right)\quad\text{For bandwidth limited AWGN channel}\\
\frac{E_b}{N_0} &> \frac{2^\eta-1}{\eta}\quad\text{SNR per bit required for error-free transmission}\\
\eta &= \frac{R_b}{W}\quad\text{Spectral efficiency (bit/(s-Hz))}\\
\eta &\gg 1\quad\text{Bandwidth limited}\\
\eta &\ll 1\quad\text{Power limited}
\end{align*}
Rb⟹RbN0Ebηηη<C<Wlog2(1+N0WPs)For bandwidth limited AWGN channel>η2η−1SNR per bit required for error-free transmission=WRbSpectral efficiency (bit/(s-Hz))≫1Bandwidth limited≪1Power limited
Channel code
Note: Define XOR (⊕\oplus⊕) as exclusive OR, or modulo-2 addition.
Hamming weight
wH(x)w_H(x)wH(x)
Number of '1'
in codeword xxx
Hamming distance
dH(x1,x2)=wH(x1⊕x2)d_H(x_1,x_2)=w_H(x_1\oplus x_2)dH(x1,x2)=wH(x1⊕x2)
Number of different bits between codewords x1x_1x1 and x2x_2x2 which is the hamming weight of the XOR of the two codes.
Minimum distance
dmind_\text{min}dmin
IMPORTANT: x≠0x\neq\textbf{0}x=0, excludes weight of all-zero codeword. For a linear block code, dmin=wmind_\text{min}=w_\text{min}dmin=wmin
Linear block code
Code is (n,k)(n,k)(n,k)
nnn is the width of a codeword
2k2^k2k codewords
A linear block code must be a subspace and satisfy both:
- Zero vector must be present at least once
- The XOR of any codeword pair in the code must result in a codeword that is already present in the code table.
-
dmin=wmind_\text{min}=w_\text{min}dmin=wmin (Implied by (1) and (2).)
Code generation
Each generator vector is a binary string of size nnn. There are kkk generator vectors in G\mathbf{G}G.
gi=[gi,0…gi,n−2gi,n−1]g0=[1010]Example for n=4G=[g0g1⋮gk−1]=[g0,0…g0,n−2g0,n−1g1,0…g1,n−2g1,n−1⋮⋱⋮⋮gk−1,0…gk−1,n−2gk−1,n−1]\begin{align*}
\mathbf{g}_i&=[\begin{matrix}
g_{i,0}& \dots & g_{i,n-2} & g_{i,n-1}
\end{matrix}]\\
\color{darkgray}\mathbf{g}_0&\color{darkgray}=[1010]\quad\text{Example for $n=4$}\\
\mathbf{G}&=\left[\begin{matrix}
\mathbf{g}_0\\
\mathbf{g}_1\\
\vdots\\
\mathbf{g}_{k-1}\\
\end{matrix}\right]=\left[\begin{matrix}
g_{0,0}& \dots & g_{0,n-2} & g_{0,n-1}\\
g_{1,0}& \dots & g_{1,n-2} & g_{1,n-1}\\
\vdots & \ddots & \vdots & \vdots\\
g_{k-1,0}& \dots & g_{k-1,n-2} & g_{k-1,n-1}\\
\end{matrix}\right]
\end{align*}
gig0G=[gi,0…gi,n−2gi,n−1]=[1010]Example for n=4=g0g1⋮gk−1=g0,0g1,0⋮gk−1,0……⋱…g0,n−2g1,n−2⋮gk−1,n−2g0,n−1g1,n−1⋮gk−1,n−1
A message block m\mathbf{m}m is coded as x\mathbf{x}x using the generation codewords in G\mathbf{G}G:
m=[m0…mn−2mk−1]m=[101001]Example for k=6x=mG=m0g0+m1g1+⋯+mk−1gk−1\begin{align*}
\mathbf{m}&=[\begin{matrix}
m_{0}& \dots & m_{n-2} & m_{k-1}
\end{matrix}]\\
\color{darkgray}\mathbf{m}&\color{darkgray}=[101001]\quad\text{Example for $k=6$}\\
\mathbf{x} &= \mathbf{m}\mathbf{G}=m_0\mathbf{g}_0+m_1\mathbf{g}_1+\dots+m_{k-1}\mathbf{g}_{k-1}
\end{align*}
mmx=[m0…mn−2mk−1]=[101001]Example for k=6=mG=m0g0+m1g1+⋯+mk−1gk−1
Systemic linear block code
Contains kkk message bits (Copy m\mathbf{m}m as-is) and (n−k)(n-k)(n−k) parity bits after the message bits.
G=[IkP]=[10…001…0⋮⋮⋱⋮00…1p0,0…p0,n−2p0,n−1p1,0…p1,n−2p1,n−1⋮⋱⋮⋮pk−1,0…pk−1,n−2pk−1,n−1]m=[m0…mn−2mk−1]x=mG=m[IkP]=[mIkmP]=[mb]b=mPParity bits of x\begin{align*}
\mathbf{G}&=\begin{array}{c|c}[\mathbf{I}_k & \mathbf{P}]\end{array}=\left[
\begin{array}{c|c}
\begin{matrix}
1 & 0 & \dots & 0\\
0 & 1 & \dots & 0\\
\vdots & \vdots & \ddots & \vdots\\
0& 0 & \dots & 1\\
\end{matrix}
&
\begin{matrix}
p_{0,0}& \dots & p_{0,n-2} & p_{0,n-1}\\
p_{1,0}& \dots & p_{1,n-2} & p_{1,n-1}\\
\vdots & \ddots & \vdots & \vdots\\
p_{k-1,0}& \dots & p_{k-1,n-2} & p_{k-1,n-1}\\
\end{matrix}\end{array}\right]\\
\mathbf{m}&=[\begin{matrix}
m_{0}& \dots & m_{n-2} & m_{k-1}
\end{matrix}]\\
\mathbf{x} &= \mathbf{m}\mathbf{G}= \mathbf{m} \begin{array}{c|c}[\mathbf{I}_k & \mathbf{P}]\end{array}=\begin{array}{c|c}[\mathbf{mI}_k & \mathbf{mP}]\end{array}=\begin{array}{c|c}[\mathbf{m} & \mathbf{b}]\end{array}\\
\mathbf{b} &= \mathbf{m}\mathbf{P}\quad\text{Parity bits of $\mathbf{x}$}
\end{align*}
Gmxb=[IkP]=10⋮001⋮0……⋱…00⋮1p0,0p1,0⋮pk−1,0……⋱…p0,n−2p1,n−2⋮pk−1,n−2p0,n−1p1,n−1⋮pk−1,n−1=[m0…mn−2mk−1]=mG=m[IkP]=[mIkmP]=[mb]=mPParity bits of x
Parity check matrix H\mathbf{H}H
Transpose P\mathbf{P}P for the parity check matrix
H=[PTIn−k]=[p0Tp1T…pk−1TIn−k]=[p0,0…p0,k−2p0,k−1p1,0…p1,k−2p1,k−1⋮⋱⋮⋮pn−1,0…pn−1,k−2pn−1,k−110…001…0⋮⋮⋱⋮00…1]xHT=0 ⟹ Codeword is valid\begin{align*}
\mathbf{H}&=\begin{array}{c|c}[\mathbf{P}^\text{T} & \mathbf{I}_{n-k}]\end{array}\\
&=\left[
\begin{array}{c|c}
\begin{matrix}
{\textbf{p}_0}^\text{T} & {\textbf{p}_1}^\text{T} & \dots & {\textbf{p}_{k-1}}^\text{T}
\end{matrix}
&
\mathbf{I}_{n-k}\end{array}\right]\\
&=\left[
\begin{array}{c|c}
\begin{matrix}
p_{0,0}& \dots & p_{0,k-2} & p_{0,k-1}\\
p_{1,0}& \dots & p_{1,k-2} & p_{1,k-1}\\
\vdots & \ddots & \vdots & \vdots\\
p_{n-1,0}& \dots & p_{n-1,k-2} & p_{n-1,k-1}\\
\end{matrix}
&
\begin{matrix}
1 & 0 & \dots & 0\\
0 & 1 & \dots & 0\\
\vdots & \vdots & \ddots & \vdots\\
0& 0 & \dots & 1\\
\end{matrix}\end{array}\right]\\
\mathbf{xH}^\text{T}&=\mathbf{0}\implies\text{Codeword is valid}
\end{align*}
HxHT=[PTIn−k]=[p0Tp1T…pk−1TIn−k]=p0,0p1,0⋮pn−1,0……⋱…p0,k−2p1,k−2⋮pn−1,k−2p0,k−1p1,k−1⋮pn−1,k−110⋮001⋮0……⋱…00⋮1=0⟹Codeword is valid
Procedure to find parity check matrix from list of codewords
- From the number of codewords, find k=log2(N)k=\log_2(N)k=log2(N)
- Partition codewords into kkk information bits and remaining bits into n−kn-kn−k parity bits. The information bits should be a simple counter (?).
- Express parity bits as a linear combination of information bits
- Put coefficients into P\textbf{P}P matrix and find H\textbf{H}H
Example:
x1x2x3x4x510110011110000011001\begin{array}{cccc}
x_1 & x_2 & x_3 & x_4 & x_5 \\\hline
\color{magenta}1&\color{magenta}0&1&1&0\\
\color{magenta}0&\color{magenta}1&1&1&1\\
\color{magenta}0&\color{magenta}0&0&0&0\\
\color{magenta}1&\color{magenta}1&0&0&1\\
\end{array}
x11001x20101x31100x41100x50101
Set x1,x2x_1,x_2x1,x2 as information bits. Express x3,x4,x5x_3,x_4,x_5x3,x4,x5 in terms of x1,x2x_1,x_2x1,x2.
x3=x1⊕x2x4=x1⊕x2x5=x2 ⟹ P=x1x2x311x411x501H=[111101100010001]\begin{align*}
\begin{aligned}
x_3 &= x_1\oplus x_2\\
x_4 &= x_1\oplus x_2\\
x_5 &= x_2\\
\end{aligned}
\implies\textbf{P}&=
\begin{array}{c|cc}
& x_1 & x_2 \\\hline
x_3&1&1&\\
x_4&1&1&\\
x_5&0&1&\\
\end{array}\\
\textbf{H}&=\left[
\begin{array}{c|c}
\begin{matrix}
1&1\\
1&1\\
0&1\\
\end{matrix}
&
\begin{matrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1\\
\end{matrix}\end{array}\right]
\end{align*}
x3x4x5=x1⊕x2=x1⊕x2=x2⟹PH=x3x4x5x1110x2111=110111100010001
Error detection and correction
Detection of sss errors: dmin≥s+1d_\text{min}\geq s+1dmin≥s+1
Correction of uuu errors: dmin≥2u+1d_\text{min}\geq 2u+1dmin≥2u+1
CHECKLIST
- Transfer function in complex envelope form h~(t)\tilde{h}(t)h~(t) should be divided by two.
- Convolutions: do not forget width when using graphical method
-
2W2W2W for rectangle functions - Scale sampled spectrum by fsf_sfs
-
2fc2f_c2fc for spectrum after IF mixing. - Square transfer function for PSD Gy(f)=∣H(f)∣2Gx(f)G_y(f)=|H(f)|^\mathbf{2}G_x(f)Gy(f)=∣H(f)∣2Gx(f)
- Square besselJ function for FM power ∣Jn(β)∣2|J_n(\beta)|^\mathbf{2}∣Jn(β)∣2
- Bandwidth: only consider positive frequencies (so the bandwidth of an AM signal will be the range from the lowest to greatest sideband frequency. For a rectangular function, it will be from 0 to W).
- TODO: add more items to check
- TODO: add some graphics for these checklist items
@media print{
.copyrighted, .info-text, h1 {
display: none !important;
}
h2, h3, h4, h5 {
page-break-inside: avoid;
}
h2::after, h3::after, h4::after, h5::after {
content: "";
display: block;
height: 100px;
margin-bottom: -100px;
}
}
@media screen {
.short-info {
display: none;
}
}