Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/peterrk/pagebloomfilter
May be fastest bloom filter in C++/Go/Java/C#/Python/Rust
https://github.com/peterrk/pagebloomfilter
bloom-filter cpp csharp golang hash high-performance java python rosetta-code rust
Last synced: 2 months ago
JSON representation
May be fastest bloom filter in C++/Go/Java/C#/Python/Rust
- Host: GitHub
- URL: https://github.com/peterrk/pagebloomfilter
- Owner: PeterRK
- License: bsd-3-clause
- Created: 2023-04-08T14:22:57.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2024-05-02T10:09:28.000Z (8 months ago)
- Last Synced: 2024-05-02T22:54:04.626Z (8 months ago)
- Topics: bloom-filter, cpp, csharp, golang, hash, high-performance, java, python, rosetta-code, rust
- Language: Assembly
- Homepage:
- Size: 405 KB
- Stars: 135
- Watchers: 2
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README-CN.md
- License: LICENSE
Awesome Lists containing this project
README
# PageBloomFilter
采用分页设计的布隆过滤器,兼顾存储密度与访问性能。
## Benchmark
![](images/Xeon-8374C.png)
在Xeon-8374C上测试50万元素,平均每次操作小于25ns,SIMD能有效加速查询操作。![](images/EPYC-7K83.png)
在EPYC-7K83上测试表现略逊,SIMD加速效果不明显。![](images/Xeon-8475B.png)
在Xeon-8475B上测试SIMD模式,使用aesni-hash可获得显著加速(**小于7ns的test操作**)。![](images/EPYC-9T24.png)
在EPYC-9T24上测试SIMD模式,使用aesni-hash也可获得显著加速,但没有Intel平台上显著。## API
```cpp
auto bf = NEW_BLOOM_FILTER(500, 0.01);
if (bf.set("Hello")) {
std::cout << "set new Hello" << std::endl;
}
if (bf.test("Hello")) {
std::cout << "find Hello" << std::endl;
}
```## Go版
```go
// import "github.com/PeterRK/PageBloomFilter/go"
// 有效容量500,假阳率0.01
bf := pbf.NewBloomFilter(500, 0.01)
if bf.Set("Hello") {
fmt.Println("set new Hello")
}
if bf.Test("Hello") {
fmt.Println("find Hello")
}
```除了原生实现,在AMD64环境中还提供基于**函数注入技术**的实现,具体而言就是将C函数编译后注入到Go程序中以免除CGO的调用开销。在Xeon-8374C上测试50万元素,Go注入版较原生版有一倍左右的性能提升,仅比C++版略慢。
```
name old time/op new time/op delta
Set4 53.6ns ± 6% 26.5ns ± 6% -50.52% (p=0.000 n=20+20)
Test4 40.5ns ± 5% 21.2ns ± 5% -47.63% (p=0.000 n=20+18)
Set5 56.4ns ± 5% 28.0ns ± 5% -50.34% (p=0.000 n=20+19)
Test5 41.5ns ± 3% 18.8ns ± 7% -54.72% (p=0.000 n=20+19)
Set6 57.6ns ± 5% 29.1ns ± 5% -49.44% (p=0.000 n=20+20)
Test6 42.2ns ± 4% 18.5ns ± 7% -56.22% (p=0.000 n=20+18)
Set7 58.8ns ± 4% 30.8ns ± 9% -47.68% (p=0.000 n=20+20)
Test7 43.9ns ± 6% 18.9ns ± 8% -56.98% (p=0.000 n=20+19)
Set8 58.4ns ± 9% 32.4ns ± 5% -44.53% (p=0.000 n=20+19)
Test8 44.8ns ± 2% 18.4ns ± 7% -58.86% (p=0.000 n=19+20)
```AMD64环境中注入版默认开启,编译前最好先执行[go-inject.sh](pbf/go-inject.sh)生成新的注入函数。注入函数生成脚本依赖clang和binutils,以及python,建议在Linux环境执行。
[测评](https://gist.github.com/PeterRK/b0df9e80caaaee1e9349e295cb435a67) 表明本实现比知名的 [bits-and-blooms](https://github.com/bits-and-blooms/bloom)和[Tyler Treat版](https://github.com/tylertreat/BoomFilters)要快2倍:
```
cpu: Intel(R) Core(TM) i7-10710U CPU @ 1.10GHz
BenchmarkPageBloomFilterSet-6 1000000 32.70 ns/op
BenchmarkPageBloomFilterTest-6 1000000 20.23 ns/op
BenchmarkBitsAndBloomSet-6 1000000 120.5 ns/op
BenchmarkBitsAndBloomTest-6 1000000 81.46 ns/op
BenchmarkTylerTreatSet-6 1000000 98.30 ns/op
BenchmarkTylerTreatTest-6 1000000 60.69 ns/op
```## Java版
```java
PageBloomFilter bf = PageBloomFilter.New(500, 0.01);
byte[] hello = "Hello".getBytes("UTF-8");
if (bf.set(hello)) {
System.out.println("set new Hello");
}
if (bf.test(hello)) {
System.out.println("find Hello");
}
```
[测评](java/src/test/java/rk/pbf/Benchmark.java) 表明本实现比Google的Guava要快很多。不过,由于缺少针对性优化,Java版没有Go版快。
```
// i7-10710U & OpenJDK-17
pbf-set: 50.962245 ns/op
pbf-test: 40.465323 ns/op
guava-set: 133.513980 ns/op
guava-test: 112.318321 ns/op
nikitin-set: 86.930928 ns/op
nikitin-test: 62.133052 ns/op
```## C#版
```csharp
var bf = PageBloomFilter.New(N, 0.01);
var hello = Encoding.ASCII.GetBytes("Hello")
if (bf.Set(hello)) {
Console.WriteLine("set new Hello");
}
if (bf.Test(hello)) {
Console.WriteLine("find Hello");
}
```
C#版代码和Java版高度一致,不过跑出来要慢不少。
```
// i7-10710U & .NET-7
pbf-set: 83.461274 ns/op
pbf-test: 74.953785 ns/op
```## Python版
```python
bf = pbf.create(500, 0.01)
if bf.set("Hello"):
print("set new Hello")
if bf.test("Hello"):
print("find Hello")
```
Python版基于C扩展实现,虽然还是慢,不过足以吊打[pybloom](https://github.com/jaybaird/python-bloomfilter)。
```
// i7-10710U & Python-3.11.3
pbf-set: 307.835638 ns/op
pbf-test: 289.679349 ns/op
pybloom-set: 2770.372372 ns/op
pybloom-test: 2417.377588 ns/op
```## Rust版
```rust
let mut bf = pbf::new_bloom_filter(500, 0.01);
let hello = "Hello".as_bytes();
if (bf.set(hello)) {
println!("set new Hello");
}
if (bf.test(hello)) {
println!("find Hello");
}
```
Rust版也缺少针对性优化,照样快过Java。由于我是Rust新手,或许Rust版本应更快。
```
// i7-10710U & Rust-1.65.0
pbf-set: 45.99ns/op
pbf-test: 27.81ns/op
```## 横向比较
![](images/i7-10710U.png)
我们将在i7-10710U上的测试数据放到一起看,可以得到性能排位:C++,Go,Rust,Java,C#,Python。## 理论分析
### 每元素字节数与假阳率的关系
![](images/byte.png)### 容积率与假阳率的关系
![](images/ratio.png)---
[【中文】](README-CN.md) [【英文】](README.md)