Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/pfizer-opensource/scikit-digital-health
Python package for the processing and analysis of Inertial Measurement Unit Data
https://github.com/pfizer-opensource/scikit-digital-health
actigraphy imu-sensor python sensors wearables
Last synced: 9 days ago
JSON representation
Python package for the processing and analysis of Inertial Measurement Unit Data
- Host: GitHub
- URL: https://github.com/pfizer-opensource/scikit-digital-health
- Owner: pfizer-opensource
- License: mit
- Created: 2020-05-15T12:52:41.000Z (over 4 years ago)
- Default Branch: main
- Last Pushed: 2024-12-03T20:13:02.000Z (about 2 months ago)
- Last Synced: 2025-01-04T01:45:20.831Z (23 days ago)
- Topics: actigraphy, imu-sensor, python, sensors, wearables
- Language: Python
- Homepage: https://scikit-digital-health.readthedocs.io/en/latest/index.html
- Size: 31.5 MB
- Stars: 62
- Watchers: 11
- Forks: 22
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- top-pharma50 - **pfizer-opensource/scikit-digital-health** - sensor`, `python`, `sensors`, `wearables`<br><img src='https://github.com/HubTou/topgh/blob/main/icons/gstars.png'> 57 <img src='https://github.com/HubTou/topgh/blob/main/icons/forks.png'> 19 <img src='https://github.com/HubTou/topgh/blob/main/icons/code.png'> Python <img src='https://github.com/HubTou/topgh/blob/main/icons/license.png'> MIT License <img src='https://github.com/HubTou/topgh/blob/main/icons/last.png'> 2024-06-07 16:22:37 | (Ranked by starred repositories)
- top-pharma50 - **pfizer-opensource/scikit-digital-health** - sensor`, `python`, `sensors`, `wearables`<br><img src='https://github.com/HubTou/topgh/blob/main/icons/gstars.png'> 57 <img src='https://github.com/HubTou/topgh/blob/main/icons/forks.png'> 19 <img src='https://github.com/HubTou/topgh/blob/main/icons/code.png'> Python <img src='https://github.com/HubTou/topgh/blob/main/icons/license.png'> MIT License <img src='https://github.com/HubTou/topgh/blob/main/icons/last.png'> 2024-06-07 16:22:37 | (Ranked by starred repositories)
README
![skdh_badge](https://github.com/PfizerRD/scikit-digital-health/workflows/skdh/badge.svg)
Scikit Digital Health (SKDH) is a Python package with methods for ingesting and analyzing wearable inertial sensor data.
- Documentation: https://scikit-digital-health.readthedocs.io/en/latest/
- Bug reports: https://github.com/PfizerRD/scikit-digital-health/issues
- Contributing: https://scikit-digital-health.readthedocs.io/en/latest/src/dev/contributing.htmlSKDH provides the following:
- Methods for ingesting data from binary file formats (ie Axivity, GeneActiv)
- Preprocessing of accelerometer data
- Common time-series signal features
- Common time-series/inertial data analysis functions
- Inertial data analysis algorithms (ie gait, sit-to-stand, sleep, activity)### Availability
SKDH is available on both `conda-forge` and `PyPI`.
```shell
conda install scikit-digital-health -c conda-forge
```or
```shell
pip install scikit-digital-health
```> [!WARNING]
> Windows pre-built wheels are provided as-is, with limited/no testing on changes made to compile extensions for Windows.> [!NOTE]
> Windows users may need to install an additional requirement: Microsoft Visual C++ redistributable >14.0. The 2015 version can be found here: https://www.microsoft.com/en-us/download/details.aspx?id=53587### Build Requirements
As of 0.9.15, Scikit Digital Health is built using Meson.
### Citation
If you use SKDH in your research, please include the following citation:
[1]
L. Adamowicz, Y. Christakis, M. D. Czech, and T. Adamusiak, “SciKit Digital Health: Python Package for Streamlined Wearable Inertial Sensor Data Processing,” JMIR mHealth and uHealth, vol. 10, no. 4, p. e36762, Apr. 2022, doi: 10.2196/36762.