Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/pfnet-research/chainer-ADDA
Adversarial Discriminative Domain Adaptation in Chainer
https://github.com/pfnet-research/chainer-ADDA
adda adversarial chainer chainer-adda domain-adaptation mnist svhn
Last synced: 2 months ago
JSON representation
Adversarial Discriminative Domain Adaptation in Chainer
- Host: GitHub
- URL: https://github.com/pfnet-research/chainer-ADDA
- Owner: pfnet-research
- License: mit
- Created: 2017-06-21T09:07:40.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2017-11-20T05:26:36.000Z (about 7 years ago)
- Last Synced: 2024-08-02T12:21:52.271Z (5 months ago)
- Topics: adda, adversarial, chainer, chainer-adda, domain-adaptation, mnist, svhn
- Language: Python
- Size: 1.99 MB
- Stars: 25
- Watchers: 5
- Forks: 4
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# chainer-ADDA
Implementation of [Adversarial Discriminative Domain Adaptation](https://arxiv.org/abs/1702.05464) in [Chainer](https://github.com/chainer/chainer).**Note** this code depends on [this](https://github.com/chainer/chainer/tree/96753116c96e26d33e4d747673114b06b86ebb6b) version of Chainer (or newer). Please check out the source from that link rather than installing via pip.
## Results
The following results are for the SVHN to MNIST domain adaptation task.
![loss](loss.png)| Training | % accuracy (Paper) | % accuracy (This implementation) |
| -------- | ----- | ------------------- |
| source only | 0.601 | 0.575 |
| ADDA | 0.760 | 0.800 |## Usage
Run `python train.py -g 0` to train everything using GPU 0. SVHN and MNIST datasets will download automatically. If a classifier pretrained on the source (SVHN) domain is not found, one will be trained first, then continue on to do ADDA.# Resources
- https://arxiv.org/pdf/1702.05464.pdf
- https://github.com/erictzeng/adda
- https://github.com/davidtellez/adda_mnist64