Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/pfnet-research/chainer-LSGAN
Least Squares Generative Adversarial Network implemented in Chainer
https://github.com/pfnet-research/chainer-LSGAN
chainer chainer-lsgan gan lsgan
Last synced: 3 months ago
JSON representation
Least Squares Generative Adversarial Network implemented in Chainer
- Host: GitHub
- URL: https://github.com/pfnet-research/chainer-LSGAN
- Owner: pfnet-research
- License: mit
- Created: 2017-03-07T07:02:52.000Z (almost 8 years ago)
- Default Branch: master
- Last Pushed: 2017-12-11T01:20:54.000Z (about 7 years ago)
- Last Synced: 2024-08-02T12:21:52.305Z (6 months ago)
- Topics: chainer, chainer-lsgan, gan, lsgan
- Language: Python
- Homepage:
- Size: 324 KB
- Stars: 18
- Watchers: 3
- Forks: 9
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE.md
Awesome Lists containing this project
README
# chainer-LSGAN
An implementation of [_Mao et al., "Least Squares Generative Adversarial Networks" 2017_](https://arxiv.org/abs/1611.04076) using the [Chainer framework](http://chainer.org/).Disclaimer: PFN provides no warranty or support for this implementation. Use it at your own risk. See [license](LICENSE.md) for details.
Results
-------
CIFAR10 & MNIST for 100 epochs
![]()
![]()
Usage
-------
Tested using `python 3.5.1`. Install the requirements first:
```
pip install -r requirements.txt
```Trains on the CIFAR10 dataset by default, and will generate an image of a sample batch from the network after each epoch. Run the following:
```
python train.py --device_id 0
```
to train. By default, an output folder will be created in your current working directory. Setting `--device_id` to -1 will run in CPU mode, whereas 0 will run on GPU number 0 etc. To train on MNIST, use the flag `--mnist`.License
-------
MIT License. Please see the LICENSE file for details.