https://github.com/pgvector/pgvector-python
pgvector support for Python
https://github.com/pgvector/pgvector-python
Last synced: 5 months ago
JSON representation
pgvector support for Python
- Host: GitHub
- URL: https://github.com/pgvector/pgvector-python
- Owner: pgvector
- License: mit
- Created: 2021-06-12T13:48:05.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2025-06-16T22:36:56.000Z (5 months ago)
- Last Synced: 2025-06-16T23:29:22.678Z (5 months ago)
- Language: Python
- Size: 398 KB
- Stars: 1,244
- Watchers: 17
- Forks: 77
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE.txt
Awesome Lists containing this project
README
# pgvector-python
[pgvector](https://github.com/pgvector/pgvector) support for Python
Supports [Django](https://github.com/django/django), [SQLAlchemy](https://github.com/sqlalchemy/sqlalchemy), [SQLModel](https://github.com/tiangolo/sqlmodel), [Psycopg 3](https://github.com/psycopg/psycopg), [Psycopg 2](https://github.com/psycopg/psycopg2), [asyncpg](https://github.com/MagicStack/asyncpg), [pg8000](https://github.com/tlocke/pg8000), and [Peewee](https://github.com/coleifer/peewee)
[](https://github.com/pgvector/pgvector-python/actions)
## Installation
Run:
```sh
pip install pgvector
```
And follow the instructions for your database library:
- [Django](#django)
- [SQLAlchemy](#sqlalchemy)
- [SQLModel](#sqlmodel)
- [Psycopg 3](#psycopg-3)
- [Psycopg 2](#psycopg-2)
- [asyncpg](#asyncpg)
- [pg8000](#pg8000)
- [Peewee](#peewee)
Or check out some examples:
- [Retrieval-augmented generation](https://github.com/pgvector/pgvector-python/blob/master/examples/rag/example.py) with Ollama
- [Embeddings](https://github.com/pgvector/pgvector-python/blob/master/examples/openai/example.py) with OpenAI
- [Binary embeddings](https://github.com/pgvector/pgvector-python/blob/master/examples/cohere/example.py) with Cohere
- [Sentence embeddings](https://github.com/pgvector/pgvector-python/blob/master/examples/sentence_transformers/example.py) with SentenceTransformers
- [Hybrid search](https://github.com/pgvector/pgvector-python/blob/master/examples/hybrid_search/rrf.py) with SentenceTransformers (Reciprocal Rank Fusion)
- [Hybrid search](https://github.com/pgvector/pgvector-python/blob/master/examples/hybrid_search/cross_encoder.py) with SentenceTransformers (cross-encoder)
- [Sparse search](https://github.com/pgvector/pgvector-python/blob/master/examples/sparse_search/example.py) with Transformers
- [Late interaction search](https://github.com/pgvector/pgvector-python/blob/master/examples/colbert/exact.py) with ColBERT
- [Visual document retrieval](https://github.com/pgvector/pgvector-python/blob/master/examples/colpali/exact.py) with ColPali
- [Image search](https://github.com/pgvector/pgvector-python/blob/master/examples/image_search/example.py) with PyTorch
- [Image search](https://github.com/pgvector/pgvector-python/blob/master/examples/imagehash/example.py) with perceptual hashing
- [Morgan fingerprints](https://github.com/pgvector/pgvector-python/blob/master/examples/rdkit/example.py) with RDKit
- [Topic modeling](https://github.com/pgvector/pgvector-python/blob/master/examples/gensim/example.py) with Gensim
- [Implicit feedback recommendations](https://github.com/pgvector/pgvector-python/blob/master/examples/implicit/example.py) with Implicit
- [Explicit feedback recommendations](https://github.com/pgvector/pgvector-python/blob/master/examples/surprise/example.py) with Surprise
- [Recommendations](https://github.com/pgvector/pgvector-python/blob/master/examples/lightfm/example.py) with LightFM
- [Horizontal scaling](https://github.com/pgvector/pgvector-python/blob/master/examples/citus/example.py) with Citus
- [Bulk loading](https://github.com/pgvector/pgvector-python/blob/master/examples/loading/example.py) with `COPY`
## Django
Create a migration to enable the extension
```python
from pgvector.django import VectorExtension
class Migration(migrations.Migration):
operations = [
VectorExtension()
]
```
Add a vector field to your model
```python
from pgvector.django import VectorField
class Item(models.Model):
embedding = VectorField(dimensions=3)
```
Also supports `HalfVectorField`, `BitField`, and `SparseVectorField`
Insert a vector
```python
item = Item(embedding=[1, 2, 3])
item.save()
```
Get the nearest neighbors to a vector
```python
from pgvector.django import L2Distance
Item.objects.order_by(L2Distance('embedding', [3, 1, 2]))[:5]
```
Also supports `MaxInnerProduct`, `CosineDistance`, `L1Distance`, `HammingDistance`, and `JaccardDistance`
Get the distance
```python
Item.objects.annotate(distance=L2Distance('embedding', [3, 1, 2]))
```
Get items within a certain distance
```python
Item.objects.alias(distance=L2Distance('embedding', [3, 1, 2])).filter(distance__lt=5)
```
Average vectors
```python
from django.db.models import Avg
Item.objects.aggregate(Avg('embedding'))
```
Also supports `Sum`
Add an approximate index
```python
from pgvector.django import HnswIndex, IvfflatIndex
class Item(models.Model):
class Meta:
indexes = [
HnswIndex(
name='my_index',
fields=['embedding'],
m=16,
ef_construction=64,
opclasses=['vector_l2_ops']
),
# or
IvfflatIndex(
name='my_index',
fields=['embedding'],
lists=100,
opclasses=['vector_l2_ops']
)
]
```
Use `vector_ip_ops` for inner product and `vector_cosine_ops` for cosine distance
#### Half-Precision Indexing
Index vectors at half-precision
```python
from django.contrib.postgres.indexes import OpClass
from django.db.models.functions import Cast
from pgvector.django import HnswIndex, HalfVectorField
class Item(models.Model):
class Meta:
indexes = [
HnswIndex(
OpClass(Cast('embedding', HalfVectorField(dimensions=3)), name='halfvec_l2_ops'),
name='my_index',
m=16,
ef_construction=64
)
]
```
Note: Add `'django.contrib.postgres'` to `INSTALLED_APPS` to use `OpClass`
Get the nearest neighbors
```python
distance = L2Distance(Cast('embedding', HalfVectorField(dimensions=3)), [3, 1, 2])
Item.objects.order_by(distance)[:5]
```
## SQLAlchemy
Enable the extension
```python
session.execute(text('CREATE EXTENSION IF NOT EXISTS vector'))
```
Add a vector column
```python
from pgvector.sqlalchemy import Vector
class Item(Base):
embedding = mapped_column(Vector(3))
```
Also supports `HALFVEC`, `BIT`, and `SPARSEVEC`
Insert a vector
```python
item = Item(embedding=[1, 2, 3])
session.add(item)
session.commit()
```
Get the nearest neighbors to a vector
```python
session.scalars(select(Item).order_by(Item.embedding.l2_distance([3, 1, 2])).limit(5))
```
Also supports `max_inner_product`, `cosine_distance`, `l1_distance`, `hamming_distance`, and `jaccard_distance`
Get the distance
```python
session.scalars(select(Item.embedding.l2_distance([3, 1, 2])))
```
Get items within a certain distance
```python
session.scalars(select(Item).filter(Item.embedding.l2_distance([3, 1, 2]) < 5))
```
Average vectors
```python
from pgvector.sqlalchemy import avg
session.scalars(select(avg(Item.embedding))).first()
```
Also supports `sum`
Add an approximate index
```python
index = Index(
'my_index',
Item.embedding,
postgresql_using='hnsw',
postgresql_with={'m': 16, 'ef_construction': 64},
postgresql_ops={'embedding': 'vector_l2_ops'}
)
# or
index = Index(
'my_index',
Item.embedding,
postgresql_using='ivfflat',
postgresql_with={'lists': 100},
postgresql_ops={'embedding': 'vector_l2_ops'}
)
index.create(engine)
```
Use `vector_ip_ops` for inner product and `vector_cosine_ops` for cosine distance
#### Half-Precision Indexing
Index vectors at half-precision
```python
from pgvector.sqlalchemy import HALFVEC
from sqlalchemy.sql import func
index = Index(
'my_index',
func.cast(Item.embedding, HALFVEC(3)).label('embedding'),
postgresql_using='hnsw',
postgresql_with={'m': 16, 'ef_construction': 64},
postgresql_ops={'embedding': 'halfvec_l2_ops'}
)
```
Get the nearest neighbors
```python
order = func.cast(Item.embedding, HALFVEC(3)).l2_distance([3, 1, 2])
session.scalars(select(Item).order_by(order).limit(5))
```
#### Arrays
Add an array column
```python
from pgvector.sqlalchemy import Vector
from sqlalchemy import ARRAY
class Item(Base):
embeddings = mapped_column(ARRAY(Vector(3)))
```
And register the types with the underlying driver
For Psycopg 3, use
```python
from pgvector.psycopg import register_vector
from sqlalchemy import event
@event.listens_for(engine, "connect")
def connect(dbapi_connection, connection_record):
register_vector(dbapi_connection)
```
For [async connections](https://docs.sqlalchemy.org/en/20/orm/extensions/asyncio.html) with Psycopg 3, use
```python
from pgvector.psycopg import register_vector_async
from sqlalchemy import event
@event.listens_for(engine.sync_engine, "connect")
def connect(dbapi_connection, connection_record):
dbapi_connection.run_async(register_vector_async)
```
For Psycopg 2, use
```python
from pgvector.psycopg2 import register_vector
from sqlalchemy import event
@event.listens_for(engine, "connect")
def connect(dbapi_connection, connection_record):
register_vector(dbapi_connection, arrays=True)
```
## SQLModel
Enable the extension
```python
session.exec(text('CREATE EXTENSION IF NOT EXISTS vector'))
```
Add a vector column
```python
from pgvector.sqlalchemy import Vector
class Item(SQLModel, table=True):
embedding: Any = Field(sa_type=Vector(3))
```
Also supports `HALFVEC`, `BIT`, and `SPARSEVEC`
Insert a vector
```python
item = Item(embedding=[1, 2, 3])
session.add(item)
session.commit()
```
Get the nearest neighbors to a vector
```python
session.exec(select(Item).order_by(Item.embedding.l2_distance([3, 1, 2])).limit(5))
```
Also supports `max_inner_product`, `cosine_distance`, `l1_distance`, `hamming_distance`, and `jaccard_distance`
Get the distance
```python
session.exec(select(Item.embedding.l2_distance([3, 1, 2])))
```
Get items within a certain distance
```python
session.exec(select(Item).filter(Item.embedding.l2_distance([3, 1, 2]) < 5))
```
Average vectors
```python
from pgvector.sqlalchemy import avg
session.exec(select(avg(Item.embedding))).first()
```
Also supports `sum`
Add an approximate index
```python
from sqlmodel import Index
index = Index(
'my_index',
Item.embedding,
postgresql_using='hnsw',
postgresql_with={'m': 16, 'ef_construction': 64},
postgresql_ops={'embedding': 'vector_l2_ops'}
)
# or
index = Index(
'my_index',
Item.embedding,
postgresql_using='ivfflat',
postgresql_with={'lists': 100},
postgresql_ops={'embedding': 'vector_l2_ops'}
)
index.create(engine)
```
Use `vector_ip_ops` for inner product and `vector_cosine_ops` for cosine distance
## Psycopg 3
Enable the extension
```python
conn.execute('CREATE EXTENSION IF NOT EXISTS vector')
```
Register the vector type with your connection
```python
from pgvector.psycopg import register_vector
register_vector(conn)
```
For [connection pools](https://www.psycopg.org/psycopg3/docs/advanced/pool.html), use
```python
def configure(conn):
register_vector(conn)
pool = ConnectionPool(..., configure=configure)
```
For [async connections](https://www.psycopg.org/psycopg3/docs/advanced/async.html), use
```python
from pgvector.psycopg import register_vector_async
await register_vector_async(conn)
```
Create a table
```python
conn.execute('CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector(3))')
```
Insert a vector
```python
embedding = np.array([1, 2, 3])
conn.execute('INSERT INTO items (embedding) VALUES (%s)', (embedding,))
```
Get the nearest neighbors to a vector
```python
conn.execute('SELECT * FROM items ORDER BY embedding <-> %s LIMIT 5', (embedding,)).fetchall()
```
Add an approximate index
```python
conn.execute('CREATE INDEX ON items USING hnsw (embedding vector_l2_ops)')
# or
conn.execute('CREATE INDEX ON items USING ivfflat (embedding vector_l2_ops) WITH (lists = 100)')
```
Use `vector_ip_ops` for inner product and `vector_cosine_ops` for cosine distance
## Psycopg 2
Enable the extension
```python
cur = conn.cursor()
cur.execute('CREATE EXTENSION IF NOT EXISTS vector')
```
Register the vector type with your connection or cursor
```python
from pgvector.psycopg2 import register_vector
register_vector(conn)
```
Create a table
```python
cur.execute('CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector(3))')
```
Insert a vector
```python
embedding = np.array([1, 2, 3])
cur.execute('INSERT INTO items (embedding) VALUES (%s)', (embedding,))
```
Get the nearest neighbors to a vector
```python
cur.execute('SELECT * FROM items ORDER BY embedding <-> %s LIMIT 5', (embedding,))
cur.fetchall()
```
Add an approximate index
```python
cur.execute('CREATE INDEX ON items USING hnsw (embedding vector_l2_ops)')
# or
cur.execute('CREATE INDEX ON items USING ivfflat (embedding vector_l2_ops) WITH (lists = 100)')
```
Use `vector_ip_ops` for inner product and `vector_cosine_ops` for cosine distance
## asyncpg
Enable the extension
```python
await conn.execute('CREATE EXTENSION IF NOT EXISTS vector')
```
Register the vector type with your connection
```python
from pgvector.asyncpg import register_vector
await register_vector(conn)
```
or your pool
```python
async def init(conn):
await register_vector(conn)
pool = await asyncpg.create_pool(..., init=init)
```
Create a table
```python
await conn.execute('CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector(3))')
```
Insert a vector
```python
embedding = np.array([1, 2, 3])
await conn.execute('INSERT INTO items (embedding) VALUES ($1)', embedding)
```
Get the nearest neighbors to a vector
```python
await conn.fetch('SELECT * FROM items ORDER BY embedding <-> $1 LIMIT 5', embedding)
```
Add an approximate index
```python
await conn.execute('CREATE INDEX ON items USING hnsw (embedding vector_l2_ops)')
# or
await conn.execute('CREATE INDEX ON items USING ivfflat (embedding vector_l2_ops) WITH (lists = 100)')
```
Use `vector_ip_ops` for inner product and `vector_cosine_ops` for cosine distance
## pg8000
Enable the extension
```python
conn.run('CREATE EXTENSION IF NOT EXISTS vector')
```
Register the vector type with your connection
```python
from pgvector.pg8000 import register_vector
register_vector(conn)
```
Create a table
```python
conn.run('CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector(3))')
```
Insert a vector
```python
embedding = np.array([1, 2, 3])
conn.run('INSERT INTO items (embedding) VALUES (:embedding)', embedding=embedding)
```
Get the nearest neighbors to a vector
```python
conn.run('SELECT * FROM items ORDER BY embedding <-> :embedding LIMIT 5', embedding=embedding)
```
Add an approximate index
```python
conn.run('CREATE INDEX ON items USING hnsw (embedding vector_l2_ops)')
# or
conn.run('CREATE INDEX ON items USING ivfflat (embedding vector_l2_ops) WITH (lists = 100)')
```
Use `vector_ip_ops` for inner product and `vector_cosine_ops` for cosine distance
## Peewee
Add a vector column
```python
from pgvector.peewee import VectorField
class Item(BaseModel):
embedding = VectorField(dimensions=3)
```
Also supports `HalfVectorField`, `FixedBitField`, and `SparseVectorField`
Insert a vector
```python
item = Item.create(embedding=[1, 2, 3])
```
Get the nearest neighbors to a vector
```python
Item.select().order_by(Item.embedding.l2_distance([3, 1, 2])).limit(5)
```
Also supports `max_inner_product`, `cosine_distance`, `l1_distance`, `hamming_distance`, and `jaccard_distance`
Get the distance
```python
Item.select(Item.embedding.l2_distance([3, 1, 2]).alias('distance'))
```
Get items within a certain distance
```python
Item.select().where(Item.embedding.l2_distance([3, 1, 2]) < 5)
```
Average vectors
```python
from peewee import fn
Item.select(fn.avg(Item.embedding).coerce(True)).scalar()
```
Also supports `sum`
Add an approximate index
```python
Item.add_index('embedding vector_l2_ops', using='hnsw')
```
Use `vector_ip_ops` for inner product and `vector_cosine_ops` for cosine distance
## Reference
### Half Vectors
Create a half vector from a list
```python
vec = HalfVector([1, 2, 3])
```
Or a NumPy array
```python
vec = HalfVector(np.array([1, 2, 3]))
```
Get a list
```python
lst = vec.to_list()
```
Get a NumPy array
```python
arr = vec.to_numpy()
```
### Sparse Vectors
Create a sparse vector from a list
```python
vec = SparseVector([1, 0, 2, 0, 3, 0])
```
Or a NumPy array
```python
vec = SparseVector(np.array([1, 0, 2, 0, 3, 0]))
```
Or a SciPy sparse array
```python
arr = coo_array(([1, 2, 3], ([0, 2, 4],)), shape=(6,))
vec = SparseVector(arr)
```
Or a dictionary of non-zero elements
```python
vec = SparseVector({0: 1, 2: 2, 4: 3}, 6)
```
Note: Indices start at 0
Get the number of dimensions
```python
dim = vec.dimensions()
```
Get the indices of non-zero elements
```python
indices = vec.indices()
```
Get the values of non-zero elements
```python
values = vec.values()
```
Get a list
```python
lst = vec.to_list()
```
Get a NumPy array
```python
arr = vec.to_numpy()
```
Get a SciPy sparse array
```python
arr = vec.to_coo()
```
## History
View the [changelog](https://github.com/pgvector/pgvector-python/blob/master/CHANGELOG.md)
## Contributing
Everyone is encouraged to help improve this project. Here are a few ways you can help:
- [Report bugs](https://github.com/pgvector/pgvector-python/issues)
- Fix bugs and [submit pull requests](https://github.com/pgvector/pgvector-python/pulls)
- Write, clarify, or fix documentation
- Suggest or add new features
To get started with development:
```sh
git clone https://github.com/pgvector/pgvector-python.git
cd pgvector-python
pip install -r requirements.txt
createdb pgvector_python_test
pytest
```
To run an example:
```sh
cd examples/loading
pip install -r requirements.txt
createdb pgvector_example
python3 example.py
```