Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/pharo-ai/wiki

The Pharo-AI Wiki
https://github.com/pharo-ai/wiki

documentaion documentation-site wiki

Last synced: about 2 months ago
JSON representation

The Pharo-AI Wiki

Awesome Lists containing this project

README

        

# Pharo-AI Wiki

This is the Pharo-AI Wiki. The goal of this wiki is to provide documentation and tutorials to help people start using our Pharo AI/Machine-Learning libraries.

- [Getting Started page](./wiki/GettingStarted/GettingStarted.md).
- [Contributing guide](./wiki/GettingStarted/Contributing.md)

If you want to see other Machine Learning projects in Pharo, please see: https://github.com/pharo-ai/awesome-pharo-ml

Keep in mind that the wiki and pharo-ai is right now under construction version so not all the algorithms will be documented or with all the functionalities that we would like to have. Nevertheless, all the things that are documented here had been revised and are working.

## Contents

- [Tutorials](#tutorials)
- [Linear Regression](#linear-regression)
- [Logistic Regression](#logistic-regression)
- [Clustering](#clustering)
- [Data Mining](#data-mining)
- [Edit Distances](#edit-distances)
- [Machine Learning](#machine-learning)
- [Regression](#regression)
- [Classification](#classification)
- [Clustering](#clustering-1)
- [Using metrics](#using-metrics)
- [Linear Algebra](#linear-algebra)
- [Data Preprocessing](#data-preprocessing)
- [Data Mining](#data-mining)
- [Metrics](#metrics)
- [State Space Search](#state-space-search)
- [Natural Language Processing](#natural-language-processing)

## Tutorials

##### Linear Regression

- [Using Linear Regression for predicting the price of a house using the Boston Dataset](./wiki/Tutorials/linear-regression-tutorial.md)

##### Logistic Regression

- [Using Logistic Regression for saying if someone has diabetes based on its physical conditions](./wiki/Tutorials/logistic-regression-tutorial.md)

##### Clustering

- [Using K-Means Clustering Machine Learning Algorithm - Simple Example](./wiki/Tutorials/clustering-simple-example.md)
- [Clustering Users of a Credit Card Company using the K-Means Algorithm](./wiki/Tutorials/clustering-credit-card-kmeans.md)
- [Image segmentation using K-Kmeans](./wiki/Tutorials/image-segmentation-using-kmeans.md)
- [Hierarchical clustering](./wiki/Tutorials/hierarchical-clustering.md)

##### Data Mining

- [Market Basket Analysis Using A-Priori](./wiki/Tutorials/market-basket-analysis-using-a-priori.md)

##### Edit Distances

- [Edit distances: Understanding them and Examples](./wiki/Tutorials/edit-distances-tutorial.md)

## Machine Learning

##### Regression

- [Linear regression](./wiki/MachineLearning/Linear-Regression.md)
- [Logistic regression](./wiki/MachineLearning/Logistic-Regression.md)
- [Support Vector Machines](wiki/MachineLearning/Support-Vector-Machines.md)

##### Classification

- Decision Tree Model
- Naive Bayes Classifier
- [K-Nearest Neighbors](./wiki/MachineLearning/k-nearest-neighbors.md)

##### Clustering

- [K Means](./wiki/Clustering/k-means.md)
- Hierarchical Clustering (WIP)
- Gaussian Mixture Model (WIP)

##### Using metrics

- [Measuring the accuracy of a model](./wiki/MachineLearning/Measuring-the-accuracy-of-a-model.md)

## Linear Algebra

- [Linear Algebra](./wiki/LinearAlgebra/LinearAlgebra.md)
- [Pharo LAPACK](./wiki/LinearAlgebra/Lapack.md)

## Data Preprocessing

- [Normalization](./wiki/DataExploration/Normalization.md)
- [Random Partitioner for Datasets](./wiki/DataExploration/Random-Partitioner.md)

## Data Mining

- A Priori algorithm

## Metrics

- [Metrics](./wiki/DataExploration/Metrics.md)
- [Edit distances](./wiki/StringMatching/Edit-distances.md)

## State Space Search

- [Graphs algorithms](./wiki/Graphs/Graph-Algorithms.md)

## Natural Language Processing

- Natural language Processing (WIP)
- [Term Frequency - Inverse Document Frequency (TF-IDF)](./wiki/NaturalLanguageProcessing/TFIDF.md)
- N-gram Model (WIP)
- Spelling correction (WIP)