Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/philgooch/abbreviation-extraction

Python3 implementation of the Schwartz-Hearst algorithm for extracting abbreviation-definition pairs
https://github.com/philgooch/abbreviation-extraction

abbreviations information-extraction keyword-extraction nlp python3

Last synced: 9 days ago
JSON representation

Python3 implementation of the Schwartz-Hearst algorithm for extracting abbreviation-definition pairs

Awesome Lists containing this project

README

        

# Extraction of abbreviation-definition pairs

[![Build Status](https://travis-ci.org/philgooch/abbreviation-extraction.svg)](https://travis-ci.org/philgooch/abbreviation-extraction)

## Version: 0.2.5

This is a Python3 implementation of the [Schwartz-Hearst algorithm](https://psb.stanford.edu/psb-online/proceedings/psb03/schwartz.pdf)
for identifying abbreviations and their corresponding definitions in free text[1].

The [original implementation is in Java](http://biotext.berkeley.edu/software.html), and Vincent Van Asch created a Python2 implementation at

http://www.cnts.ua.ac.be/~vincent/scripts/abbreviations.py

* NB: As of March 2019 this link appears to be dead.

I have simplified, refactored it for Python 3 and added some tests.

This version outputs a Python dictionary of abbreviation:definition pairs.

## Installation for command-line use
pip install -r requirements.txt

### Usage

From the command line

python abbreviations/schwartz_hearst.py

## Installation as a module

python3 setup.py install

or

pip install abbreviations

### Usage

from abbreviations import schwartz_hearst

# By default, the most recently encountered definition for each term is returned
pairs = schwartz_hearst.extract_abbreviation_definition_pairs(doc_text='The emergency room (ER) was busy')
pairs = schwartz_hearst.extract_abbreviation_definition_pairs(file_path='')

# If multiple definitions are encountered for each term, you might want to return the most common for each
pairs = schwartz_hearst.extract_abbreviation_definition_pairs(doc_text='...', most_common_definition=True)

# ... or you might want to return the first encountered definition for each
pairs = schwartz_hearst.extract_abbreviation_definition_pairs(doc_text='...', first_definition=True)

# when using a longer text, the format is line-separated sentences:
import nltk
sentences = nltk.sent_tokenize(longer_text)
pairs = schwartz_hearst.extract_abbreviation_definition_pairs(doc_text='\n'.join(sentences))

[1] A. Schwartz and M. Hearst (2003) A Simple Algorithm for Identifying Abbreviations Definitions in Biomedical Text.
Biocomputing, 451-462.