Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/philipperemy/tensorflow-fifo-queue-example
Example on how to use a Tensorflow Queue to feed data to your models.
https://github.com/philipperemy/tensorflow-fifo-queue-example
deep-learning machine-learning tensorflow tensorflow-1-0 tensorflow-examples tensorflow-tutorials
Last synced: about 1 month ago
JSON representation
Example on how to use a Tensorflow Queue to feed data to your models.
- Host: GitHub
- URL: https://github.com/philipperemy/tensorflow-fifo-queue-example
- Owner: philipperemy
- License: mit
- Created: 2017-03-17T01:26:38.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2020-03-30T14:41:22.000Z (over 4 years ago)
- Last Synced: 2024-09-27T21:21:05.242Z (about 2 months ago)
- Topics: deep-learning, machine-learning, tensorflow, tensorflow-1-0, tensorflow-examples, tensorflow-tutorials
- Language: Python
- Size: 9.77 KB
- Stars: 38
- Watchers: 5
- Forks: 10
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
- License: LICENSE
Awesome Lists containing this project
README
# Tensorflow FIFO Queue example
### Example on how to use a Tensorflow Queue to feed data to your models.
Compatible with Tensorflow 1.x. Please upgrade if you have Tensorflow 0.x.
## How to use it?
```bash
git clone [email protected]:philipperemy/tensorflow-fifo-queue-example.git tf-queue
cd tf-queue
# make sure at least Tensorflow 1.0.1 is installed.
python main.py # to start the example which uses the Tensorflow queue.
```## Output
```
size queue = 2
[[[ 20.68614197 20.15329361 20.39105034 20.90393257 20.8211174 ]
[ 20.21601105 20.20680237 20.63046837 20.11518097 20.2508316 ]
[ 20.362957 20.39513588 20.35568619 20.95798302 20.71342659]
[ 20.58656502 20.94277954 20.59599304 20.31328011 20.04895973]
[ 20.71495628 20.77456474 20.75753403 20.87974739 20.58901596]]]
size queue = 32
[[[ 20.00242424 20.91688347 20.93519402 20.9217968 20.38695526]
[ 20.87318802 20.75139427 20.08540344 20.78540802 20.7677784 ]
[ 20.1153717 20.56425858 20.81686783 20.97789001 20.55836296]
[ 20.5869751 20.9584446 20.81368828 20.98579597 20.55318069]
[ 20.02428436 20.96101379 20.37574196 20.5288887 20.97519875]]]
size queue = 32
[[[ 20.72234535 20.75441933 20.00969887 20.94854736 20.19271469]
[ 20.01235771 20.57665443 20.37540245 20.1708107 20.77712822]
[ 20.82086945 20.53391647 20.28100777 20.27137947 20.87246895]
[ 20.63288879 20.74639893 20.88269043 20.81982231 20.77005577]
[ 20.57556725 20.25545311 20.99351501 20.12363815 20.93238068]]]
```
In this example, we define:
- one pusher thread (data) - The data thread (could be more than 1 thread) is used to generate the data and push it to the queue.
- one poller thread (model) - The model thread (should be 1) is used to pop the queue and process the data.