Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/philipphager/ultr-cm-vs-ips
Source code for our paper "Contrasting Neural Click Models and Pointwise IPS Rankers".
https://github.com/philipphager/ultr-cm-vs-ips
clickmodels inverse-propensity-score ltr unbiased-learning-to-rank
Last synced: 2 months ago
JSON representation
Source code for our paper "Contrasting Neural Click Models and Pointwise IPS Rankers".
- Host: GitHub
- URL: https://github.com/philipphager/ultr-cm-vs-ips
- Owner: philipphager
- License: mit
- Created: 2022-07-26T12:33:20.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2023-04-17T13:49:28.000Z (over 1 year ago)
- Last Synced: 2023-04-26T11:01:30.498Z (over 1 year ago)
- Topics: clickmodels, inverse-propensity-score, ltr, unbiased-learning-to-rank
- Language: Jupyter Notebook
- Homepage:
- Size: 7.75 MB
- Stars: 7
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Contrasting Neural Click Models and Pointwise IPS Rankers
Source code for our paper `Contrasting Neural Click Models and Pointwise IPS Rankers`.## Data
The project automatically downloads public datasets to `~/.ltr-datasets/` on first execution.## Installation
1. Install dependencies using conda: `conda env create -f environment.yaml`
2. Activate environment: `conda activate ultr-cm-vs-ips`
3. Run experiments in the `/scripts directory`, e.g.: `./scripts/mslr_dataset_size.sh`## Reference
```
@inproceedings{Hager2023Contrasting,
author = {Philipp Hager and Maarten de Rijke and Onno Zoeter},
title = {Contrasting Neural Click Models and Pointwise IPS Rankers},
booktitle = {ECIR 2023: 45th European Conference on Information Retrieval},
publisher = {Springer},
year = {2023},
}
```
## License
This project uses the [MIT license]().