Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/philschmid/document-ai-transformers


https://github.com/philschmid/document-ai-transformers

Last synced: 20 days ago
JSON representation

Awesome Lists containing this project

README

        

# Document AI with Hugging Face Transformers

[Document AI](https://en.wikipedia.org/wiki/Document_AI) s a term that has become popular over the last 3 years. It defines machine learning models, tasks, and techniques to classify, parse, and extract information from documents in digital and print forms, like invoices, receipts, licenses, contracts, and business reports.

![logo](./assets/logo.png)

This repository contains different example and tutorials on how to get started with Document AI and Transformers. Below you can also find a compendium of available models, tasks, datasets and other resources.

**Training**
* [fine-tuning donut with SROIE](./training/donut_sroie.ipynb)
* [fine-tuning LayoutLM with FUNSD](./training/layoutlm_funsd.ipynb)
* [fine-tuning LiLT with FUNSD](./training/lilt_funsd.ipynb)

**Inference**
* [Donut](./inference/donut_inference.ipynb)
* [LayoutLM](./inference/layoutlm_inference.ipynb)
* [LiLT](./inference/lilt_inference.ipynb)

**Data-processing**

* [convert FUNSD to donut document for vqa](./data_processing/FUNSD_for_Donut.ipynb)

**Demos/Spaces**

Community:
* [fedihch/InvoiceReceiptClassifierDemo](https://huggingface.co/spaces/fedihch/InvoiceReceiptClassifierDemo)
* [nielsr/LayoutLMv2-FUNSD](https://huggingface.co/spaces/nielsr/LayoutLMv2-FUNSD)
* [katanaml/LayoutLMv2-CORD](https://huggingface.co/spaces/katanaml/LayoutLMv2-CORD)
* [nielsr/TrOCR-handwritten](https://huggingface.co/spaces/nielsr/TrOCR-handwritten)
* [keras-io/ocr-for-captcha](https://huggingface.co/spaces/keras-io/ocr-for-captcha)
* [nielsr/dit-document-layout-analysis](https://huggingface.co/spaces/nielsr/dit-document-layout-analysis)
* [PatrickTyBrown/LoanDocumentClassifier](https://huggingface.co/spaces/PatrickTyBrown/LoanDocumentClassifier)
* [Theivaprakasham/layoutlmv2_invoice](https://huggingface.co/spaces/Theivaprakasham/layoutlmv2_invoice)
* [TMsp/invoice_processing_layoutlmv3_custom](https://huggingface.co/spaces/Msp/invoice_processing_layoutlmv3_custom)
* [Epoching/DocumentQA](https://huggingface.co/spaces/Epoching/DocumentQA)
* [impira/docquery](https://huggingface.co/spaces/impira/docquery)

popular models are layoutlm....
and Donut which we will use today get a first impression of how you can build you own document AI System using Hugging Face Transformers.

### Machine Learning Models (Transformers)

Below you can find a table of the currently available Transformers models, who are achieving state-of-the-art performance on Document AI tasks.

| model | paper | license | checkpoints |
|-------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|
| [Donut](https://huggingface.co/docs/transformers/main/en/model_doc/donut#overview) | [arxiv](https://arxiv.org/abs/2111.15664) | [MIT](https://github.com/clovaai/donut#license) | [huggingface](https://huggingface.co/models?other=donut) |
| [LiLT](https://huggingface.co/docs/transformers/main/en/model_doc/lilt#overview) | [arxiv](https://arxiv.org/abs/2202.13669) | [MIT](https://github.com/clovaai/donut#license) | [huggingface](https://huggingface.co/models?other=lilt) |
| [LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm) | [arxiv](https://arxiv.org/abs/1912.13318) | [MIT](https://github.com/microsoft/unilm/blob/master/LICENSE) | [huggingface](https://huggingface.co/models?other=layoutlm) |
| [LMLayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutlm) | [arxiv](https://arxiv.org/abs/2104.08836) | [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) | [huggingface](https://huggingface.co/microsoft/layoutxlm-base) |
| [LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlm) | [arxiv](https://arxiv.org/abs/2012.14740) | [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) | [huggingface](https://huggingface.co/models?other=layoutlmv2) |
| [LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlm) | [arxiv](https://arxiv.org/abs/2204.08387) | [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) | [huggingface](https://huggingface.co/models?other=layoutlmv3) |
| [DiT](https://huggingface.co/docs/transformers/model_doc/dit) | [arxiv](https://arxiv.org/abs/2203.02378) | [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) | [huggingface](https://huggingface.co/models?other=dit) |
| [TrOCR](https://huggingface.co/docs/transformers/main/en/model_doc/trocr) | [arxiv](https://arxiv.org/abs/2109.10282) | [MIT](https://github.com/microsoft/unilm/blob/master/LICENSE) | [huggingface](https://huggingface.co/models?filter=trocr) |

### Tasks

Document AI includes the following use cases and tasks:

* document classification (image-classification)
* document parsing (form understanding & information extraction)
* visual question answering
* table detection/layout analysis
* optical character recognition (OCR)

### Datasets

| Dataset | Task | Hugging Face Datasets |
|-------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------|
| [SROIE](https://github.com/zzzDavid/ICDAR-2019-SROIE) | document parsing | [darentang/sroie](https://huggingface.co/datasets/darentang/sroie/blob/main/sroie.py) |
| [RVL-CDIP](https://huggingface.co/datasets/rvl_cdip) | document classification | [rvl_cdip](https://huggingface.co/datasets/rvl_cdip) |
| [XFUND](https://github.com/doc-analysis/XFUND) | document parsing |[ranpox/xfund](https://huggingface.co/datasets/ranpox/xfund) |
| [FUNSD](https://guillaumejaume.github.io/FUNSD/) | document parsing | [nielsr/funsd](https://huggingface.co/datasets/nielsr/funsd) |
| [CORD](https://github.com/clovaai/cord) | information extraction/parsing | [naver-cola-ix/cord-v2](https://huggingface.co/datasets/naver-clova-ix/cord-v2) |
| [DocVQA](https://www.docvqa.org/) | visual question answering | [_load manually_](https://rrc.cvc.uab.es/?ch=17&com=downloads) |
| [WildReceipt](https://paperswithcode.com/dataset/wildreceipt) | document parsing | [Theivaprakasham/wildreceipt](https://huggingface.co/datasets/Theivaprakasham/wildreceipt) |
| [TableBank](https://doc-analysis.github.io/tablebank-page/index.html) | table detection/layout analysis | [_load manually_](https://doc-analysis.github.io/tablebank-page/index.html) |
| [DocBank](https://doc-analysis.github.io/docbank-page/index.html) | table detection/layout analysis | [_load manually_](https://doc-analysis.github.io/docbank-page/index.html) |
| [ReadingBank](https://github.com/doc-analysis/ReadingBank) | table detection/layout analysis | [_load manually_](https://github.com/doc-analysis/ReadingBank) |
| [EATEN](https://github.com/beacandler/EATEN) | document parsing | [_load manually_](https://github.com/beacandler/EATEN) |
| [PubLayNet](https://github.com/ibm-aur-nlp/PubLayNet) | table detection/layout analysis | [jordanparker6/publaynet](https://huggingface.co/datasets/jordanparker6/publaynet) |
| [ICDAR2019_cTDaR](https://github.com/cndplab-founder/ICDAR2019_cTDaR) | table detection/layout analysis | [_load manually_](https://cndplab-founder.github.io/cTDaR2019/dataset-training.html) |

### APIs and existing Solutuions

* [Amazon Textract](https://aws.amazon.com/de/textract/)
* [Google Cloud Document AI](https://cloud.google.com/document-ai/)
* [Azure Form Recognizer](https://azure.microsoft.com/en-us/services/form-recognizer/#features)

### Other Tools

* [SynthDoG 🐶: Synthetic Document Generator](https://github.com/clovaai/donut/tree/master/synthdog)

### Resources

[OCR-Free Document Understanding with Donut](https://towardsdatascience.com/ocr-free-document-understanding-with-donut-1acfbdf099be)