Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/philz1337x/video-style-transfer
Transfer the style of your video. Use on ClarityAI.co
https://github.com/philz1337x/video-style-transfer
anime video video-style-transfer video-transformation
Last synced: about 3 hours ago
JSON representation
Transfer the style of your video. Use on ClarityAI.co
- Host: GitHub
- URL: https://github.com/philz1337x/video-style-transfer
- Owner: philz1337x
- Created: 2024-06-25T08:50:33.000Z (7 months ago)
- Default Branch: main
- Last Pushed: 2024-07-23T10:55:29.000Z (7 months ago)
- Last Synced: 2024-07-23T15:01:13.439Z (7 months ago)
- Topics: anime, video, video-style-transfer, video-transformation
- Language: Python
- Homepage: https://ClarityAI.co
- Size: 3.32 MB
- Stars: 9
- Watchers: 1
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
Video-Style-Stransfer
[![App](https://img.shields.io/badge/App-ClarityAI.co-blueviolet)](https://ClarityAI.co)
[![Replicate](https://img.shields.io/badge/Demo-Replicate-purple)](https://replicate.com/philz1337x/video-style-transfer)
[![GitHub Repo](https://img.shields.io/badge/GitHub-video-style-transfer-blue?logo=github)](https://github.com/philz1337x/video-style-transfer)
[![Twitter Follow](https://img.shields.io/twitter/follow/philz1337x?style=social)](https://twitter.com/philz1337x)
![GitHub stars](https://img.shields.io/github/stars/philz1337x/video-style-transfer?style=social&label=Star)# 👋 Hello
I build open source AI apps. To finance my work i also build paid versions of my code. But feel free to use the free code. I post features and new projects on https://twitter.com/philz1337x
# 🗞️ Updates
- 07/23/2024: Code release
# 🚀 Options to use Video-Style-Transfer
## 🧑💻 App
The simplest option to use it is with my upscaler app at [ClarityAI.co](https://ClarityAI.co)
## API: Run on replicate
Use my public replicate model at: Replicate.com/philz1337x/video-style-transfer
## Advanced: Deploy and run with cog (locally or cloud)
If you are not familiar with cog read: cog docs
- run `download_weights.py`
- predict with cog:
```su
cog predict -i video="link-to-image"
```