Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/phodal/aigc
《构筑大语言模型应用:应用开发与架构设计》一本关于 LLM 在真实世界应用的开源电子书,介绍了大语言模型的基础知识和应用,以及如何构建自己的模型。其中包括Prompt的编写、开发和管理,探索最好的大语言模型能带来什么,以及LLM应用开发的模式和架构设计。
https://github.com/phodal/aigc
aigc chatgpt ebook llm opensource
Last synced: 7 days ago
JSON representation
《构筑大语言模型应用:应用开发与架构设计》一本关于 LLM 在真实世界应用的开源电子书,介绍了大语言模型的基础知识和应用,以及如何构建自己的模型。其中包括Prompt的编写、开发和管理,探索最好的大语言模型能带来什么,以及LLM应用开发的模式和架构设计。
- Host: GitHub
- URL: https://github.com/phodal/aigc
- Owner: phodal
- Created: 2023-06-22T13:42:41.000Z (over 1 year ago)
- Default Branch: master
- Last Pushed: 2024-01-23T10:02:45.000Z (12 months ago)
- Last Synced: 2024-12-29T02:11:56.311Z (14 days ago)
- Topics: aigc, chatgpt, ebook, llm, opensource
- Language: Rust
- Homepage: https://aigc.phodal.com/
- Size: 20.2 MB
- Stars: 1,419
- Watchers: 25
- Forks: 171
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesomeLibrary - aigc - 构筑大语言模型应用:应用开发与架构设计》一本关于 LLM 在真实世界应用的开源电子书,介绍了大语言模型的基础知识和应用,以及如何构建自己的模型。其中包括Prompt的编写、开发和管理,探索最好的大语言模型能带来什么,以及LLM应用开发的模式和架构设计。 (语言资源库 / rust)
- StarryDivineSky - phodal/aigc
- awesome-ChatGPT-repositories - aigc - 《构筑大语言模型应用:应用开发与架构设计》一本关于 LLM 在真实世界应用的开源电子书,介绍了大语言模型的基础知识和应用,以及如何构建自己的模型。其中包括Prompt的编写、开发和管理,探索最好的大语言模型能带来什么,以及LLM应用开发的模式和架构设计。 (Prompts)
- awesome-llm-and-aigc - phodal/aigc
- awesome-llm-and-aigc - phodal/aigc
- awesome-rust-list - phodal/aigc
- awesome-rust-list - phodal/aigc
- my-awesome - phodal/aigc - 01 star:1.4k fork:0.2k 《构筑大语言模型应用:应用开发与架构设计》一本关于 LLM 在真实世界应用的开源电子书,介绍了大语言模型的基础知识和应用,以及如何构建自己的模型。其中包括Prompt的编写、开发和管理,探索最好的大语言模型能带来什么,以及LLM应用开发的模式和架构设计。 (Rust)
README
# 构筑大语言模型应用:应用开发与架构设计
> aka. Unlocking the Potential of Large Language Models: Real-World Use Cases
2023 年的上半年里,我(@phodal)和 Thoughtworks
的同事们(如:@[tianweiliu](https://github.com/tianweiliu)、@[teobler](https://github.com/teobler)、@[mutoe](https://github.com/mutoe)
等)、
开源社区的同伴们(如:
卷王@[CGQAQ](https://github.com/CGQAQ)、@[genffy](https://github.com/genffy)、 @[liruifengv](https://github.com/liruifengv)
等)
一起,创建了一系列的流行的或者不流行的开源项目。它们涉及了:- LLM 能力的充分运用
- Prompt 编写:Prompt 学习与编写模式
- Prompt 管理:Prompt 即代码
- LLM 下的软件开发工序及应用架构设计
- 新的交互设计:Chat 模式
- 大模型友好的工序:基于 AI 2.0 (ChatGPT + Copilot)如何去设计软件开发流程
- LLM 应用架构的设计与落地:Unit Mesh
- 面向特定场景的 LLM 应用
- 基于开源模型构建自己的模型:特定场景的模型微调 + LLMOps
- 上下文工程(prompt 工程):LLM 应用的核心围绕于上述的一系列内容,我们也在思考软件开发能给我们带来了什么。所以,我重新整理了过去半年的一些思考、文章,重新编写了这本开源电子书,希望能够帮助到大家。
关注我的微信公众号(搜索 phodal-weixin),获得更多及时的更新:
![微信公众号](src/images/qrcode.jpg)
我们发起的相关开源项目如下(包括但是不限于):
| 名称 | 描述 | 类型 | Stars |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------|
| [理解 Prompt](https://github.com/prompt-engineering/understand-prompt) | 基于编程、绘画、写作的 AI 探索与总结。 | 文档 | ![GitHub Repo stars](https://img.shields.io/github/stars/prompt-engineering/understand-prompt) |
| [Prompt 编写模式](https://github.com/prompt-engineering/prompt-patterns) | 如何将思维框架赋予机器,以设计模式的形式来思考 prompt。 | 文档 | ![GitHub Repo stars](https://img.shields.io/github/stars/prompt-engineering/prompt-patterns) |
| [ClickPrompt](https://github.com/prompt-engineering/click-prompt) | 用于一键轻松查看、分享和执行您的 Prompt。 | 应用 | ![GitHub Repo stars](https://img.shields.io/github/stars/prompt-engineering/click-prompt) |
| [ChatVisualNovel](https://github.com/prompt-engineering/chat-visual-novel) | 基于 ChatGPT 的定制化视觉小说引擎 | 应用 | ![GitHub Repo stars](https://img.shields.io/github/stars/prompt-engineering/chat-visual-novel) |
| [ChatFlow](https://github.com/prompt-engineering/chat-flow) | 打造个性化 ChatGPT 流程,构建自动化之路。 | 框架 | ![GitHub Repo stars](https://img.shields.io/github/stars/prompt-engineering/chat-flow) |
| [Unit Mesh](https://github.com/unit-mesh/unit-mesh) | 基于 AI 为核心的软件 2.0 思想的软件架构。 | 架构 | ![GitHub Repo stars](https://img.shields.io/github/stars/unit-mesh/unit-mesh) |
| [Unit Minions](https://github.com/unit-mesh/unit-minions) | AI 研发提效研究:自己动手训练 LoRA | 微调教程、指南、数据集 | ![GitHub Repo stars](https://img.shields.io/github/stars/unit-mesh/unit-minions) |
| [Unit Runtime](https://github.com/unit-mesh/unit-runtime) | 一个 ChatGPT 等 AI 代码的运行环境,可一键启动并实时交互,帮助您快速构建和测试 AI 代码。 | 基础设施 | ![GitHub Repo stars](https://img.shields.io/github/stars/unit-mesh/unit-runtime) |
| [DevTi](https://github.com/unit-mesh/devti) | 基于 LLM 的微调来提供全面智能化解决方案,助力开发人员高效完成开发任务,以实现自动化用户任务拆解、用户故事生成、自动化代码生成、自动化测试生成等等。 | 微调代码 | ![GitHub Repo stars](https://img.shields.io/github/stars/unit-mesh/devti) |
| [AutoDev](https://github.com/unit-mesh/auto-dev) | 一款 Intellij IDEA 的 LLM/AI 辅助编程插件。AutoDev 能够与您的需求管理系统(例如 Jira、Trello、Github Issue 等)直接对接。 | IDEA 插件 | ![GitHub Repo stars](https://img.shields.io/github/stars/unit-mesh/auto-dev) |
| [ArchGuard Co-mate](https://github.com/archguard/co-mate) | 基于人工智能技术的架构副驾驶、设计和治理工具 | 架构协同应用 | ![GitHub Repo stars](https://img.shields.io/github/stars/archguard/co-mate) |我们在 QCon
上的演讲:[演讲:探索软件开发新工序:LLM 赋能研发效能提升](https://qcon.infoq.cn/2023/guangzhou/presentation/5319)> LLM(如 ChatGPT + GitHub
> Copilot)作为一种创新的工具组合,为我们带来了全新的机遇。它能够帮助业务人员和开发者在需求、架构、编码、测试等环节提高效率和质量,实现从设计到验证的端到端流程。在本次分享中,我将向大家介绍
> LLM 在研发效能方面的应用场景和实践案例,展示它是如何在各个环节中发挥作用的。同时,我们还将分享如何构建私有化的 LLM
> 工程化方式,使其更好地适应组织的需求。欢迎对 LLM + 研发效能感兴趣的朋友们参加本次分享,与我们一起探讨研发效能的未来。我们在 Bilibili 上的大语言模型微调相关的视频:
- LLaMA
系列在线视频: 《[代码辅助生成](https://www.bilibili.com/video/BV1Rh411u74H/)》 、《[测试代码生成](https://www.bilibili.com/video/BV1jg4y1G7Xc/)》 、《[详细需求生成](https://www.bilibili.com/video/BV1Us4y1N7rd/)》 、《[文本转 SQL](https://www.bilibili.com/video/BV1uv4y1H7bg/)》
- ChatGLM 系列在线视频: 《[LoRA 大比拼:ChatGLM vs LLaMA,谁更会写需求文档?](https://www.bilibili.com/video/BV1fv4y1n7Y3/)》欢迎大家一起来参与我们的开源项目,一起来探索 LLM + 软件开发的未来。