Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/phtrempe/conviz
Conviz is a convolutional neural network layer visualization library developed in Python and used with Keras.
https://github.com/phtrempe/conviz
convolutional-layers convolutional-networks convolutional-neural-networks keras python python-3 python3 tensorflow theano visualization
Last synced: 5 days ago
JSON representation
Conviz is a convolutional neural network layer visualization library developed in Python and used with Keras.
- Host: GitHub
- URL: https://github.com/phtrempe/conviz
- Owner: PhTrempe
- License: mit
- Created: 2017-03-22T19:51:45.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2017-04-04T21:05:44.000Z (over 7 years ago)
- Last Synced: 2024-09-29T09:19:51.431Z (about 1 month ago)
- Topics: convolutional-layers, convolutional-networks, convolutional-neural-networks, keras, python, python-3, python3, tensorflow, theano, visualization
- Language: Python
- Homepage: https://github.com/PhTrempe/conviz
- Size: 1.25 MB
- Stars: 0
- Watchers: 0
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
| Better Code Hub compliance |
|:--------------------------:|
| [![Better Code Hub compliance](https://bettercodehub.com/edge/badge/PhTrempe/conviz)](https://bettercodehub.com/) |## Description
Conviz is a convolutional neural network layer visualization library developed
in Python and used with Keras.## How to Install
```
pip install conviz
```## A Small Example to Get You Started
```python
from conviz.models import cifar10
from conviz.utils.image_util import ImageUtil
from conviz.visualizer import Visualizer# Loads a model trained on the CIFAR10 dataset
model = cifar10.load()# Creates and binds a visualizer to the model
visualizer = Visualizer(model)# Gets the layer of the model to visualize
layer = model.get_layer("conv1")# Generates the visualization for the selected layer as a 4 by 4 grid of filters
img = visualizer.visualize(layer, (4, 4), ga_rate=0.1, num_steps=1000)# Saves the generated visualization image to a file
ImageUtil.save_image(img, "./conv1.png")
```