Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/pierluigi-failla/pipesnake
a pandas sklearn-inspired pipeline data processor
https://github.com/pierluigi-failla/pipesnake
feature-engineering feature-extraction pandas pipeline pipeline-data-processor python scikit-learn
Last synced: 13 days ago
JSON representation
a pandas sklearn-inspired pipeline data processor
- Host: GitHub
- URL: https://github.com/pierluigi-failla/pipesnake
- Owner: pierluigi-failla
- License: other
- Created: 2018-01-26T16:17:45.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2022-12-27T15:19:48.000Z (about 2 years ago)
- Last Synced: 2024-04-20T04:03:40.952Z (9 months ago)
- Topics: feature-engineering, feature-extraction, pandas, pipeline, pipeline-data-processor, python, scikit-learn
- Language: Python
- Size: 276 KB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# `pipesnake`
*a [Pandas](https://pandas.pydata.org/) [Scikit-Learn](http://scikit-learn.org) inspired pipeline data processor and feature engineering for Python 3*
`pipesnake` is a data processing pipeline able to handle Pandas Dataframes. In many cases
Dataframes are used to clean-up data, pre-processing it and to perform feature engineering,
`pipesnake` tries to simplify these steps, creating complex pipelines.[documentation](https://pierluigi-failla.github.io/pipesnake/); [examples](examples/README.md);
## Why?
Two easy reasons:
* in many cases Pandas DataFrame is super easy to build _feature extractor_ or _data preocessors_
* in many cases it is useful to have a pipeline that can process both `x` and `y` at the same time# How can you use `pipesnake` ?
## Install
The easy way:
`pip install --upgrade https://github.com/pierluigi-failla/pipesnake/tarball/master`
to get the latest version available on GitHub, or:
`pip install pipesnake`
to install the latest stable version on [PyPi](https://pypi.python.org).
## Coding
You can build your own pipelines combining `SeriesPipe` and `ParallelPipe`, both of them can handle list
of `Transformer`.An inherited `Transformer` object is a class which implements the abstract
`base.Transformer` methods:```python
from pipesnake.base import Transformerclass MyTransformer(Transformer):
def __init__(self, name=None, ):
Transformer.__init__(self, name=name, ...)
def fit_x(self, x):
def fit_y(self, y):
def transform_x(self, x):
def transform_y(self, y):
def inverse_transform_x(self, x):
def inverse_transform_y(self, y):
```You can find some `Transformers` already implemented in `pipesnake.transformers`.
Once you have all the needed `Transformers` you can create pipelines for feature engineering or data
processing using `SeriesPipe` or `ParallelPipe`:```python
from pipesnake.pipe import ParallelPipe
from pipesnake.pipe import SeriesPipepipe = SeriesPipe(transformers=[
ParallelPipe(transformers=[
MyTransformer1(),
MyTransformer2(),
]),
MyTransformer3(),
])
```More info in the [documentation]() and in the [examples](examples/README.md).
# Batteries included
`pipesnake` comes with several transformers included:
Module | Name | Short Description
--- | --- | ---
`pipenskae.transformers.combiner` | `Combiner` | Apply user function to a column or a set of columns
`pipenskae.transformers.combiner` | `Roller` | Apply the provided function rolling within a given window
`pipenskae.transformers.converter` | `Category2Number` | Convert categorical to number
`pipenskae.transformers.deeplearning` | `LSTMPacker` | Pack rows in order to be used as input for LSTM networks
`pipenskae.transformers.dropper` | `DropDuplicates` | Drop duplicated rows and/or cols
`pipenskae.transformers.dropper` | `DropNanCols` | Drop cols with nans
`pipenskae.transformers.dropper` | `DropNanRows` | Drop rows with nans
`pipenskae.transformers.financial` | `ToReturn` | Convert columns to `financial return`: r_t = (x_t - x_{t-1}) / x_{t-1}
`pipenskae.transformers.imputer` | `ReplaceImputer` | Impute NaNs replacing them
`pipenskae.transformers.imputer` | `KnnImputer` | Impute NaNs using K-nearest neighbors
`pipenskae.transformers.misc` | `ToNumpy` | Convert `x` and `y` to a particular numpy type
`pipenskae.transformers.misc` | `ColumnRenamer` | Rename `x` and `y` columns
`pipenskae.transformers.misc` | `Copycat` | Copy the datasets forward
`pipenskae.transformers.scaler` | `MinMaxScaler` | Min max scaler
`pipenskae.transformers.scaler` | `StdScaler` | Standard deviation scaler
`pipenskae.transformers.scaler` | `MadScaler` | Median absolute deviation scaler
`pipenskae.transformers.scaler` | `UnitLenghtScaler` | Scale the feature vector to have norm 1.0
`pipenskae.transformers.selector` | `ColumnSelector` | Select a given list of column names to keep
`pipenskae.transformers.stats` | `Digitize` | Digitize values in columns based on their `pdf`
`pipenskae.transformers.stats` | `ToSymbolProbability` | Convert values in columns to their probabilities# How can you contribute to `pipesnake` ?
First of all grab a copy of the repository:
`git clone https://github.com/scikit-learn/scikit-learn.git`
you can run tests just running `run_tests.py`.
There is a bunch of things you can contribute as far as `pipesnake` is at its early stages:
* **improvements**: make the library bugfixed, faster, parallel, nicer, cleaner...;
* **documentation**: this library uses Sphinx to generate documentation, so feel free to enrich it;
* **samples**: create examples about using the library;
* **transformers**: develop new-general-purpose transformers to share with the community;
* **tests**: code better tests to extend the coverage and reduce code regression;or whatever you may thing is relevant to make `pipesnake` better.