Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/pierrekieffer/neuralnetworkgenerator
Test and generate the best Neural Net model based on a series of parameters
https://github.com/pierrekieffer/neuralnetworkgenerator
deep-learning keras neural-networks
Last synced: about 2 months ago
JSON representation
Test and generate the best Neural Net model based on a series of parameters
- Host: GitHub
- URL: https://github.com/pierrekieffer/neuralnetworkgenerator
- Owner: PierreKieffer
- Created: 2018-12-02T21:04:14.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2019-06-21T09:17:34.000Z (over 5 years ago)
- Last Synced: 2023-03-07T01:31:41.779Z (almost 2 years ago)
- Topics: deep-learning, keras, neural-networks
- Language: Python
- Homepage:
- Size: 6.84 KB
- Stars: 0
- Watchers: 0
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# NeuralNetworkGenerator
This library provides full process to Test and generate the best Neural Net model based on a series of parameters
for a generic input dataframe### load_processed_data
- load data
### generate_nn_list
- Return a list of dictionnaries. Each dict has different param for a neural net. The input is a dict of parameters :
param_choices = {
'nb_neurons' : [32,64,128],
'nb_layers' : [3,4,5,6],
'activation' : ['relu','elu','sigmoid'],
'optimizer' : ['adam','rmsprop','adamax','sgd'],
}
### compile_model
- Build a neural net from generate_nn_list output
### train_networks
- Classic Train and test models
### cross_validation
- Train and Test models on n differents train_test_split of the data, and return the score mean for each architecture of neural net