Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/pierrenodet/autoarima.jl
Automatic multi-seasonal ARIMA Learning
https://github.com/pierrenodet/autoarima.jl
arima auto-arima forecasting time-series time-series-analysis
Last synced: 1 day ago
JSON representation
Automatic multi-seasonal ARIMA Learning
- Host: GitHub
- URL: https://github.com/pierrenodet/autoarima.jl
- Owner: pierrenodet
- License: mit
- Created: 2021-04-24T01:12:19.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2021-05-05T16:47:35.000Z (over 3 years ago)
- Last Synced: 2024-11-16T01:28:56.846Z (about 2 months ago)
- Topics: arima, auto-arima, forecasting, time-series, time-series-analysis
- Language: Julia
- Homepage:
- Size: 192 KB
- Stars: 5
- Watchers: 3
- Forks: 1
- Open Issues: 8
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# AutoARIMA.jl
[![Build Status](https://github.com/pierrenodet/AutoARIMA.jl/workflows/CI/badge.svg)](https://github.com/pierrenodet/AutoARIMA.jl/actions?query=workflow%3ACI)
[![codecov.io](https://codecov.io/github/pierrenodet/AutoARIMA.jl/branch/main/graph/badge.svg)](http://codecov.io/github/pierrenodet/AutoARIMA.jl/branch/main)
[![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://pierrenodet.github.io/AutoARIMA.jl/stable)
[![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://pierrenodet.github.io/AutoARIMA.jl/dev)Automatic multi-seasonal ARIMA Learning with Box and Jenkins method.
```julia
using AutoARIMAjulia> z = seriesG
144-element StaticArrays.SVector{144, Int64} with indices SOneTo(144):
112
118
132
129
⋮
508
461
390
432julia> sarima = fit(MSARIMAParams([0,0],[1,1],[1,1],[1,12]),log.(z))
ARMAModel{13, 13, Float64}(-0.002232109177566169, [1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 1.0, -1.0], [0.34919600156185515, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.31610711882734377, -0.11038334195974667], Float64[], 0.0016285014276129083)julia> forecast(sarima,log.(z))
6.104360295754863julia> best = boxjenkins(z,true,2,2,2,[1,12],criterium=aicc)
AutoARIMA.ARMAXModel{25, 0, 0, Float64}(-0.0009527614685900121, [1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0 … -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -1.0, 1.0], Float64[], Float64[], 0.004332904404300882)
```