An open API service indexing awesome lists of open source software.

https://github.com/pietrozullo/mcp-use

mcp-use is the easiest way to interact with mcp servers with custom agents
https://github.com/pietrozullo/mcp-use

agents ai mcp mcp-client

Last synced: 3 days ago
JSON representation

mcp-use is the easiest way to interact with mcp servers with custom agents

Awesome Lists containing this project

README

        

Unified MCP Client Library

[![](https://img.shields.io/pypi/dw/mcp_use.svg)](https://pypi.org/project/mcp_use/)
[![PyPI Downloads](https://img.shields.io/pypi/dm/mcp_use.svg)](https://pypi.org/project/mcp_use/)
[![PyPI Version](https://img.shields.io/pypi/v/mcp_use.svg)](https://pypi.org/project/mcp_use/)
[![Python Versions](https://img.shields.io/pypi/pyversions/mcp_use.svg)](https://pypi.org/project/mcp_use/)
[![Documentation](https://img.shields.io/badge/docs-mcp--use.io-blue)](https://docs.mcp-use.io)
[![License](https://img.shields.io/github/license/pietrozullo/mcp-use)](https://github.com/pietrozullo/mcp-use/blob/main/LICENSE)
[![Code style: Ruff](https://img.shields.io/badge/code%20style-ruff-000000.svg)](https://github.com/astral-sh/ruff)
[![GitHub stars](https://img.shields.io/github/stars/pietrozullo/mcp-use?style=social)](https://github.com/pietrozullo/mcp-use/stargazers)
[![Twitter Follow](https://img.shields.io/twitter/follow/Pietro?style=social)](https://x.com/pietrozullo)

🌐 MCP-Use is the open source way to connect **any LLM to any MCP server** and build custom agents that have tool access, without using closed source or application clients.

💡 Let developers easily connect any LLM to tools like web browsing, file operations, and more.

# Features

## ✨ Key Features

| Feature | Description |
|---------|-------------|
| 🔄 **Ease of use** | Create your first MCP capable agent you need only 6 lines of code |
| 🤖 **LLM Flexibility** | Works with any langchain supported LLM that supports tool calling (OpenAI, Anthropic, Groq, LLama etc.) |
| 🌐 **HTTP Support** | Direct connection to MCP servers running on specific HTTP ports |
| ⚙️ **Dynamic Server Selection** | Agents can dynamically choose the most appropriate MCP server for a given task from the available pool |
| 🧩 **Multi-Server Support** | Use multiple MCP servers simultaneously in a single agent |
| 🛡️ **Tool Restrictions** | Restrict potentially dangerous tools like file system or network access |

# Quick start

With pip:

```bash
pip install mcp-use
```

Or install from source:

```bash
git clone https://github.com/pietrozullo/mcp-use.git
cd mcp-use
pip install -e .
```

### Installing LangChain Providers

mcp_use works with various LLM providers through LangChain. You'll need to install the appropriate LangChain provider package for your chosen LLM. For example:

```bash
# For OpenAI
pip install langchain-openai

# For Anthropic
pip install langchain-anthropic

# For other providers, check the [LangChain chat models documentation](https://python.langchain.com/docs/integrations/chat/)
```

and add your API keys for the provider you want to use to your `.env` file.

```bash
OPENAI_API_KEY=
ANTHROPIC_API_KEY=
```

> **Important**: Only models with tool calling capabilities can be used with mcp_use. Make sure your chosen model supports function calling or tool use.

### Spin up your agent:

```python
import asyncio
import os
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from mcp_use import MCPAgent, MCPClient

async def main():
# Load environment variables
load_dotenv()

# Create configuration dictionary
config = {
"mcpServers": {
"playwright": {
"command": "npx",
"args": ["@playwright/mcp@latest"],
"env": {
"DISPLAY": ":1"
}
}
}
}

# Create MCPClient from configuration dictionary
client = MCPClient.from_dict(config)

# Create LLM
llm = ChatOpenAI(model="gpt-4o")

# Create agent with the client
agent = MCPAgent(llm=llm, client=client, max_steps=30)

# Run the query
result = await agent.run(
"Find the best restaurant in San Francisco",
)
print(f"\nResult: {result}")

if __name__ == "__main__":
asyncio.run(main())
```

You can also add the servers configuration from a config file like this:

```python
client = MCPClient.from_config_file(
os.path.join("browser_mcp.json")
)
```

Example configuration file (`browser_mcp.json`):

```json
{
"mcpServers": {
"playwright": {
"command": "npx",
"args": ["@playwright/mcp@latest"],
"env": {
"DISPLAY": ":1"
}
}
}
}
```

For other settings, models, and more, check out the documentation.

# Example Use Cases

## Web Browsing with Playwright

```python
import asyncio
import os
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from mcp_use import MCPAgent, MCPClient

async def main():
# Load environment variables
load_dotenv()

# Create MCPClient from config file
client = MCPClient.from_config_file(
os.path.join(os.path.dirname(__file__), "browser_mcp.json")
)

# Create LLM
llm = ChatOpenAI(model="gpt-4o")
# Alternative models:
# llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
# llm = ChatGroq(model="llama3-8b-8192")

# Create agent with the client
agent = MCPAgent(llm=llm, client=client, max_steps=30)

# Run the query
result = await agent.run(
"Find the best restaurant in San Francisco USING GOOGLE SEARCH",
max_steps=30,
)
print(f"\nResult: {result}")

if __name__ == "__main__":
asyncio.run(main())
```

## Airbnb Search

```python
import asyncio
import os
from dotenv import load_dotenv
from langchain_anthropic import ChatAnthropic
from mcp_use import MCPAgent, MCPClient

async def run_airbnb_example():
# Load environment variables
load_dotenv()

# Create MCPClient with Airbnb configuration
client = MCPClient.from_config_file(
os.path.join(os.path.dirname(__file__), "airbnb_mcp.json")
)

# Create LLM - you can choose between different models
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")

# Create agent with the client
agent = MCPAgent(llm=llm, client=client, max_steps=30)

try:
# Run a query to search for accommodations
result = await agent.run(
"Find me a nice place to stay in Barcelona for 2 adults "
"for a week in August. I prefer places with a pool and "
"good reviews. Show me the top 3 options.",
max_steps=30,
)
print(f"\nResult: {result}")
finally:
# Ensure we clean up resources properly
if client.sessions:
await client.close_all_sessions()

if __name__ == "__main__":
asyncio.run(run_airbnb_example())
```

Example configuration file (`airbnb_mcp.json`):

```json
{
"mcpServers": {
"airbnb": {
"command": "npx",
"args": ["-y", "@openbnb/mcp-server-airbnb"]
}
}
}
```

## Blender 3D Creation

```python
import asyncio
from dotenv import load_dotenv
from langchain_anthropic import ChatAnthropic
from mcp_use import MCPAgent, MCPClient

async def run_blender_example():
# Load environment variables
load_dotenv()

# Create MCPClient with Blender MCP configuration
config = {"mcpServers": {"blender": {"command": "uvx", "args": ["blender-mcp"]}}}
client = MCPClient.from_dict(config)

# Create LLM
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")

# Create agent with the client
agent = MCPAgent(llm=llm, client=client, max_steps=30)

try:
# Run the query
result = await agent.run(
"Create an inflatable cube with soft material and a plane as ground.",
max_steps=30,
)
print(f"\nResult: {result}")
finally:
# Ensure we clean up resources properly
if client.sessions:
await client.close_all_sessions()

if __name__ == "__main__":
asyncio.run(run_blender_example())
```

# Configuration File Support

MCP-Use supports initialization from configuration files, making it easy to manage and switch between different MCP server setups:

```python
import asyncio
from mcp_use import create_session_from_config

async def main():
# Create an MCP session from a config file
session = create_session_from_config("mcp-config.json")

# Initialize the session
await session.initialize()

# Use the session...

# Disconnect when done
await session.disconnect()

if __name__ == "__main__":
asyncio.run(main())
```

## HTTP Connection Example

MCP-Use now supports HTTP connections, allowing you to connect to MCP servers running on specific HTTP ports. This feature is particularly useful for integrating with web-based MCP servers.

Here's an example of how to use the HTTP connection feature:

```python
import asyncio
import os
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from mcp_use import MCPAgent, MCPClient

async def main():
"""Run the example using a configuration file."""
# Load environment variables
load_dotenv()

config = {
"mcpServers": {
"http": {
"url": "http://localhost:8931/sse"
}
}
}

# Create MCPClient from config file
client = MCPClient.from_dict(config)

# Create LLM
llm = ChatOpenAI(model="gpt-4o")

# Create agent with the client
agent = MCPAgent(llm=llm, client=client, max_steps=30)

# Run the query
result = await agent.run(
"Find the best restaurant in San Francisco USING GOOGLE SEARCH",
max_steps=30,
)
print(f"\nResult: {result}")

if __name__ == "__main__":
# Run the appropriate example
asyncio.run(main())
```

This example demonstrates how to connect to an MCP server running on a specific HTTP port. Make sure to start your MCP server before running this example.

# Multi-Server Support

MCP-Use allows configuring and connecting to multiple MCP servers simultaneously using the `MCPClient`. This enables complex workflows that require tools from different servers, such as web browsing combined with file operations or 3D modeling.

## Configuration

You can configure multiple servers in your configuration file:

```json
{
"mcpServers": {
"airbnb": {
"command": "npx",
"args": ["-y", "@openbnb/mcp-server-airbnb", "--ignore-robots-txt"]
},
"playwright": {
"command": "npx",
"args": ["@playwright/mcp@latest"],
"env": {
"DISPLAY": ":1"
}
}
}
}
```

## Usage

The `MCPClient` class provides methods for managing connections to multiple servers. When creating an `MCPAgent`, you can provide an `MCPClient` configured with multiple servers.

By default, the agent will have access to tools from all configured servers. If you need to target a specific server for a particular task, you can specify the `server_name` when calling the `agent.run()` method.

```python
# Example: Manually selecting a server for a specific task
result = await agent.run(
"Search for Airbnb listings in Barcelona",
server_name="airbnb" # Explicitly use the airbnb server
)

result_google = await agent.run(
"Find restaurants near the first result using Google Search",
server_name="playwright" # Explicitly use the playwright server
)
```

## Dynamic Server Selection (Server Manager)

For enhanced efficiency and to reduce potential agent confusion when dealing with many tools from different servers, you can enable the Server Manager by setting `use_server_manager=True` during `MCPAgent` initialization.

When enabled, the agent intelligently selects the correct MCP server based on the tool chosen by the LLM for a specific step. This minimizes unnecessary connections and ensures the agent uses the appropriate tools for the task.

```python
import asyncio
from mcp_use import MCPClient, MCPAgent
from langchain_anthropic import ChatAnthropic

async def main():
# Create client with multiple servers
client = MCPClient.from_config_file("multi_server_config.json")

# Create agent with the client
agent = MCPAgent(
llm=ChatAnthropic(model="claude-3-5-sonnet-20240620"),
client=client,
use_server_manager=True # Enable the Server Manager
)

try:
# Run a query that uses tools from multiple servers
result = await agent.run(
"Search for a nice place to stay in Barcelona on Airbnb, "
"then use Google to find nearby restaurants and attractions."
)
print(result)
finally:
# Clean up all sessions
await client.close_all_sessions()

if __name__ == "__main__":
asyncio.run(main())
```

# Tool Access Control

MCP-Use allows you to restrict which tools are available to the agent, providing better security and control over agent capabilities:

```python
import asyncio
from mcp_use import MCPAgent, MCPClient
from langchain_openai import ChatOpenAI

async def main():
# Create client
client = MCPClient.from_config_file("config.json")

# Create agent with restricted tools
agent = MCPAgent(
llm=ChatOpenAI(model="gpt-4"),
client=client,
disallowed_tools=["file_system", "network"] # Restrict potentially dangerous tools
)

# Run a query with restricted tool access
result = await agent.run(
"Find the best restaurant in San Francisco"
)
print(result)

# Clean up
await client.close_all_sessions()

if __name__ == "__main__":
asyncio.run(main())
```

# Debugging

MCP-Use provides a built-in debug mode that increases log verbosity and helps diagnose issues in your agent implementation.

## Enabling Debug Mode

There are two primary ways to enable debug mode:

### 1. Environment Variable (Recommended for One-off Runs)

Run your script with the `DEBUG` environment variable set to the desired level:

```bash
# Level 1: Show INFO level messages
DEBUG=1 python3.11 examples/browser_use.py

# Level 2: Show DEBUG level messages (full verbose output)
DEBUG=2 python3.11 examples/browser_use.py
```

This sets the debug level only for the duration of that specific Python process.

Alternatively you can set the following environment variable to the desired logging level:

```bash
export MCP_USE_DEBUG=1 # or 2
```

### 2. Setting the Debug Flag Programmatically

You can set the global debug flag directly in your code:

```python
import mcp_use

mcp_use.set_debug(1) # INFO level
# or
mcp_use.set_debug(2) # DEBUG level (full verbose output)
```

### 3. Agent-Specific Verbosity

If you only want to see debug information from the agent without enabling full debug logging, you can set the `verbose` parameter when creating an MCPAgent:

```python
# Create agent with increased verbosity
agent = MCPAgent(
llm=your_llm,
client=your_client,
verbose=True # Only shows debug messages from the agent
)
```

This is useful when you only need to see the agent's steps and decision-making process without all the low-level debug information from other components.

# Roadmap


  • [x] Multiple Servers at once

  • [x] Test remote connectors (http, ws)

  • [ ] ...

## Star History

[![Star History Chart](https://api.star-history.com/svg?repos=pietrozullo/mcp-use&type=Date)](https://www.star-history.com/#pietrozullo/mcp-use&Date)

# Contributing

We love contributions! Feel free to open issues for bugs or feature requests.

# Requirements

- Python 3.11+
- MCP implementation (like Playwright MCP)
- LangChain and appropriate model libraries (OpenAI, Anthropic, etc.)

# Citation

If you use MCP-Use in your research or project, please cite:

```bibtex
@software{mcp_use2025,
author = {Zullo, Pietro},
title = {MCP-Use: MCP Library for Python},
year = {2025},
publisher = {GitHub},
url = {https://github.com/pietrozullo/mcp-use}
}
```

# License

MIT