Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/pingcap/django-tidb

TiDB dialect for Django
https://github.com/pingcap/django-tidb

django python tidb

Last synced: 5 days ago
JSON representation

TiDB dialect for Django

Awesome Lists containing this project

README

        

# TiDB dialect for Django

![PyPI](https://img.shields.io/pypi/v/django-tidb)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/django-tidb)
![PyPI - Downloads](https://img.shields.io/pypi/dw/django-tidb)
[![.github/workflows/ci.yml](https://github.com/pingcap/django-tidb/actions/workflows/ci.yml/badge.svg)](https://github.com/pingcap/django-tidb/actions/workflows/ci.yml)

This adds compatibility for [TiDB](https://github.com/pingcap/tidb) to Django.

## Installation Guide

### Prerequisites

Before installing django-tidb, ensure you have a MySQL driver installed. You can choose either `mysqlclient`(recommended) or `pymysql`(at your own risk).

#### Install mysqlclient (Recommended)

Please refer to the [mysqlclient official guide](https://github.com/PyMySQL/mysqlclient#install)

#### Install pymysql (At your own risk)

> django-tidb has not been tested with pymysql

```bash
pip install pymysql
```

Then add the following code at the beginning of your Django's `settings.py`:

```python
import pymysql

pymysql.install_as_MySQLdb()
```

### Installing django-tidb

To install django-tidb, you need to select the version that corresponds with your Django version. Please refer to the table below for guidance:

> The minor release number of Django doesn't correspond to the minor release number of django-tidb. Use the latest minor release of each.

|django|django-tidb|install command|
|:----:|:---------:|:-------------:|
|v5.0.x|v5.0.x|`pip install 'django-tidb~=5.0.0'`|
|v4.2.x|v4.2.x|`pip install 'django-tidb~=4.2.0'`|
|v4.1.x|v4.1.x|`pip install 'django-tidb~=4.1.0'`|
|v3.2.x|v3.2.x|`pip install 'django-tidb~=3.2.0'`|

## Usage

Set `'ENGINE': 'django_tidb'` in your settings to this:

```python
DATABASES = {
'default': {
'ENGINE': 'django_tidb',
'NAME': 'django',
'USER': 'root',
'PASSWORD': '',
'HOST': '127.0.0.1',
'PORT': 4000,
},
}
DEFAULT_AUTO_FIELD = 'django.db.models.AutoField'
USE_TZ = False
SECRET_KEY = 'django_tests_secret_key'
```

- [AUTO_RANDOM](#using-auto_random)
- [AUTO_ID_CACHE](#using-auto_id_cache)
- [Vector (Beta)](#vector-beta)

### Using `AUTO_RANDOM`

[`AUTO_RANDOM`](https://docs.pingcap.com/tidb/stable/auto-random) is a feature in TiDB that generates unique IDs for a table automatically. It is similar to `AUTO_INCREMENT`, but it can avoid write hotspot in a single storage node caused by TiDB assigning consecutive IDs. It also have some restrictions, please refer to the [documentation](https://docs.pingcap.com/tidb/stable/auto-random#restrictions).

To use `AUTO_RANDOM` in Django, you can do it by following two ways:

1. Declare globally in `settings.py` as shown below, it will affect all models:

```python
DEFAULT_AUTO_FIELD = 'django_tidb.fields.BigAutoRandomField'
```

2. Manually declare it in the model as shown below:

```python
from django_tidb.fields import BigAutoRandomField

class MyModel(models.Model):
id = BigAutoRandomField(primary_key=True)
title = models.CharField(max_length=200)
```

`BigAutoRandomField` is a subclass of `BigAutoField`, it can only be used for primary key and its behavior can be controlled by setting the parameters `shard_bits` and `range`. For detailed information, please refer to the [documentation](https://docs.pingcap.com/tidb/stable/auto-random#basic-concepts).

Migrate from `AUTO_INCREMENT` to `AUTO_RANDOM`:

1. Check if the original column is `BigAutoField(bigint)`, if not, migrate it to `BigAutoField(bigint)` first.
2. In the database configuration (`settings.py`), define [`SET @@tidb_allow_remove_auto_inc = ON`](https://docs.pingcap.com/tidb/stable/system-variables#tidb_allow_remove_auto_inc-new-in-v2118-and-v304) in the `init_command`. You can remove it after completing the migration.

```python
# settings.py
DATABASES = {
'default': {
'ENGINE': 'django_tidb',
...
'OPTIONS': {
'init_command': 'SET @@tidb_allow_remove_auto_inc = ON',
}

}
}
```

3. Finnaly, migrate it to `BigAutoRandomField(bigint)`.

> **Note**
>
> `AUTO_RANDOM` is supported after TiDB v3.1.0, and only support define with `range` after v6.3.0, so `range` will be ignored if TiDB version is lower than v6.3.0

### Using `AUTO_ID_CACHE`

[`AUTO_ID_CACHE`](https://docs.pingcap.com/tidb/stable/auto-increment#auto_id_cache) allow users to set the cache size for allocating the auto-increment ID, as you may know, TiDB guarantees that AUTO_INCREMENT values are monotonic (always increasing) on a per-server basis, but its value may appear to jump dramatically if an INSERT operation is performed against another TiDB Server, This is caused by the fact that each server has its own cache which is controlled by `AUTO_ID_CACHE`. But from TiDB v6.4.0, it introduces a centralized auto-increment ID allocating service, you can enable [*MySQL compatibility mode*](https://docs.pingcap.com/tidb/stable/auto-increment#mysql-compatibility-mode) by set `AUTO_ID_CACHE` to `1` when creating a table without losing performance.

To use `AUTO_ID_CACHE` in Django, you can specify `tidb_auto_id_cache` in the model's `Meta` class as shown below when creating a new table:

```python
class MyModel(models.Model):
title = models.CharField(max_length=200)

class Meta:
tidb_auto_id_cache = 1
```

But there are some limitations:

- `tidb_auto_id_cache` can only affect the table creation, after that it will be ignored even if you change it.
- `tidb_auto_id_cache` only affects the `AUTO_INCREMENT` column.

### Vector (Beta)

Now only TiDB Cloud Serverless cluster supports vector data type, see [Integrating Vector Search into TiDB Serverless for AI Applications](https://www.pingcap.com/blog/integrating-vector-search-into-tidb-for-ai-applications/).

`VectorField` is still in beta, and the API may change in the future.

To use `VectorField` in Django, you need to install `django-tidb` with `vector` extra:

```bash
pip install 'django-tidb[vector]'
```

Then you can use `VectorField` in your model:

```python
from django.db import models
from django_tidb.fields.vector import VectorField

class Test(models.Model):
embedding = VectorField(dimensions=3)
```

You can also add an hnsw index when creating the table, for more information, please refer to the [documentation](https://docs.google.com/document/d/15eAO0xrvEd6_tTxW_zEko4CECwnnSwQg8GGrqK1Caiw).

```python
class Test(models.Model):
embedding = VectorField(dimensions=3)
class Meta:
indexes = [
VectorIndex(L2Distance("embedding"), name='idx_l2'),
]
```

#### Create a record

```python
Test.objects.create(embedding=[1, 2, 3])
```

#### Get instances with vector field

TiDB Vector support below distance functions:

- `L1Distance`
- `L2Distance`
- `CosineDistance`
- `NegativeInnerProduct`

Get instances with vector field and calculate distance to a given vector:

```python
Test.objects.annotate(distance=CosineDistance('embedding', [3, 1, 2]))
```

Get instances with vector field and calculate distance to a given vector, and filter by distance:

```python
Test.objects.alias(distance=CosineDistance('embedding', [3, 1, 2])).filter(distance__lt=5)
```

## Supported versions

- TiDB 5.0 and newer
- Django 3.2, 4.1, 4.2 and 5.0
- Python 3.6 and newer(must match Django's Python version requirement)

## Test

create your virtualenv with:

```bash
$ virtualenv venv
$ source venv/bin/activate
```

you can use the command ```deactivate``` to exit from the virtual environment.

run all integration tests.

```bash
$ DJANGO_VERSION=3.2.12 python run_testing_worker.py
```

## Migrate from previous versions

Releases on PyPi before 3.0.0 are published from repository https://github.com/blacktear23/django_tidb. This repository is a new implementation and released under versions from 3.0.0. No backwards compatibility is ensured. The most significant points are:

- Engine name is `django_tidb` instead of `django_tidb.tidb`.

## Known issues

- TiDB before v6.6.0 does not support FOREIGN KEY constraints([#18209](https://github.com/pingcap/tidb/issues/18209)).
- TiDB before v6.2.0 does not support SAVEPOINT([#6840](https://github.com/pingcap/tidb/issues/6840)).
- TiDB has limited support for default value expressions, please refer to the [documentation](https://docs.pingcap.com/tidb/dev/data-type-default-values#specify-expressions-as-default-values).