An open API service indexing awesome lists of open source software.

https://github.com/pingcap/pytidb

TiDB AI SDK: Unified Multi-Modal Data Platform for AI Apps & Agents - https://pingcap.github.io/ai/
https://github.com/pingcap/pytidb

ai embeddings fulltext-search hnsw hybrid-search multi-modal rag semantic-search similarity-search sql tidb vector-search

Last synced: 28 days ago
JSON representation

TiDB AI SDK: Unified Multi-Modal Data Platform for AI Apps & Agents - https://pingcap.github.io/ai/

Awesome Lists containing this project

README

          

TiDB Python AI SDK

[![Python Package Index](https://img.shields.io/pypi/v/pytidb.svg)](https://pypi.org/project/pytidb)
[![Monthly PyPI Downloads](https://static.pepy.tech/badge/pytidb/month)](https://pepy.tech/projects/pytidb)
[![Total PyPI Downloads](https://static.pepy.tech/badge/pytidb)](https://pepy.tech/projects/pytidb)


Quick Start

Documentation

Examples

Roadmap

Discord

Report Bug

## Introduction

**Python SDK for TiDB AI**: A unified data platform empowering developers to build next-generation AI applications.

- 🔍 **Unified Search Modes**: Vector · Full‑Text · Hybrid
- 🎭 **Auto‑Embedding & Multi‑Modal Storage**: Support for text, images, and more
- 🖼️ **Image Search Support**: Text‑to‑image and image‑to‑image retrieval capabilities
- 🎯 **Advanced Filtering & Reranking**: Flexible filters with optional reranker models to fine-tune result relevance
- 💱 **Transaction Support**: Full transaction management including commit/rollback to ensure consistency

## Installation

> [!NOTE]
> This Python package is under rapid development and its API may change. It is recommended to use a **fixed version** when installing, e.g., `pytidb==0.0.12`.

```bash
pip install pytidb

# To use built-in embedding functions and rerankers:
pip install "pytidb[models]"

# To convert query results to pandas DataFrame:
pip install pandas
```

## Connect to TiDB Cloud

Create a free TiDB cluster at [tidbcloud.com](https://tidbcloud.com/?utm_source=github&utm_medium=referral&utm_campaign=pytidb_readme).

```python
import os
from pytidb import TiDBClient

tidb_client = TiDBClient.connect(
host=os.getenv("TIDB_HOST"),
port=int(os.getenv("TIDB_PORT")),
username=os.getenv("TIDB_USERNAME"),
password=os.getenv("TIDB_PASSWORD"),
database=os.getenv("TIDB_DATABASE"),
ensure_db=True,
)
```

## Highlights

### 🤖 Automatic Embedding

PyTiDB automatically embeds text fields (e.g., `text`) and stores the vector embedding in a vector field (e.g., `text_vec`).

**Create a table with an embedding function:**

```python
from pytidb.schema import TableModel, Field, FullTextField
from pytidb.embeddings import EmbeddingFunction

# Set API key for embedding provider.
tidb_client.configure_embedding_provider("openai", api_key=os.getenv("OPENAI_API_KEY"))

class Chunk(TableModel):
__tablename__ = "chunks"

id: int = Field(primary_key=True)
text: str = FullTextField()
text_vec: list[float] = EmbeddingFunction(
"openai/text-embedding-3-small"
).VectorField(source_field="text") # 👈 Defines the vector field.
user_id: int = Field()

table = tidb_client.create_table(schema=Chunk, if_exists="skip")
```

**Bulk insert data:**

```python
table.bulk_insert([
Chunk(id=2, text="bar", user_id=2), # 👈 The text field is embedded and saved to text_vec automatically.
Chunk(id=3, text="baz", user_id=3),
Chunk(id=4, text="qux", user_id=4),
])
```

### 🔍 Search

**Vector Search**

Vector search finds the most relevant records based on **semantic similarity**, so you don't need to include all keywords explicitly in your query.

```python
df = (
table.search("") # 👈 The query is embedded automatically.
.filter({"user_id": 2})
.limit(2)
.to_list()
)
# Output: A list of dicts.
```

See the [Vector Search example](https://github.com/pingcap/pytidb/blob/main/examples/vector_search) for more details.

**Full-text Search**

Full-text search tokenizes the query and finds the most relevant records by matching exact keywords.

```python
df = (
table.search("", search_type="fulltext")
.limit(2)
.to_pydantic()
)
# Output: A list of pydantic model instances.
```

See the [Full-text Search example](https://github.com/pingcap/pytidb/blob/main/examples/fulltext_search) for more details.

**Hybrid Search**

Hybrid search combines **exact matching** from full-text search with **semantic understanding** from vector search, delivering more relevant and reliable results.

```python
df = (
table.search("", search_type="hybrid")
.limit(2)
.to_pandas()
)
# Output: A pandas DataFrame.
```

See the [Hybrid Search example](https://github.com/pingcap/pytidb/blob/main/examples/hybrid_search) for more details.

**Image Search**

Image search lets you find visually similar images using natural language descriptions or another image as a reference.

```python
from PIL import Image
from pytidb.schema import TableModel, Field
from pytidb.embeddings import EmbeddingFunction

# Define a multi-modal embedding model.
jina_embed_fn = EmbeddingFunction("jina_ai/jina-embeddings-v4") # Using multi-modal embedding model.

class Pet(TableModel):
__tablename__ = "pets"
id: int = Field(primary_key=True)
image_uri: str = Field()
image_vec: list[float] = jina_embed_fn.VectorField(
source_field="image_uri",
source_type="image"
)

table = tidb_client.create_table(schema=Pet, if_exists="skip")

# Insert sample images ...
table.insert(Pet(image_uri="path/to/shiba_inu_14.jpg"))

# Search for images using natural language
results = table.search("shiba inu dog").limit(1).to_list()

# Search for images using an image ...
query_image = Image.open("shiba_inu_15.jpg")
results = table.search(query_image).limit(1).to_pydantic()
```

See the [Image Search example](https://github.com/pingcap/pytidb/blob/main/examples/image_search) for more details.

#### Advanced Filtering

PyTiDB supports a variety of operators for flexible filtering:

| Operator | Description | Example |
| -------- | --------------------- | ------------------------------------------ |
| `$eq` | Equal to | `{"field": {"$eq": "hello"}}` |
| `$gt` | Greater than | `{"field": {"$gt": 1}}` |
| `$gte` | Greater than or equal | `{"field": {"$gte": 1}}` |
| `$lt` | Less than | `{"field": {"$lt": 1}}` |
| `$lte` | Less than or equal | `{"field": {"$lte": 1}}` |
| `$in` | In array | `{"field": {"$in": [1, 2, 3]}}` |
| `$nin` | Not in array | `{"field": {"$nin": [1, 2, 3]}}` |
| `$and` | Logical AND | `{"$and": [{"field1": 1}, {"field2": 2}]}` |
| `$or` | Logical OR | `{"$or": [{"field1": 1}, {"field2": 2}]}` |

### ⛓ Join Structured and Unstructured Data

```python
from pytidb import Session
from pytidb.sql import select

# Create a table to store user data:
class User(TableModel):
__tablename__ = "users"
id: int = Field(primary_key=True)
name: str = Field(max_length=20)

with Session(engine) as session:
query = (
select(Chunk).join(User, Chunk.user_id == User.id).where(User.name == "Alice")
)
chunks = session.exec(query).all()

[(c.id, c.text, c.user_id) for c in chunks]
```

### 💱 Transaction Support

PyTiDB supports transaction management, helping you avoid race conditions and ensure data consistency.

```python
with tidb_client.session() as session:
initial_total_balance = tidb_client.query("SELECT SUM(balance) FROM players").scalar()

# Transfer 10 coins from player 1 to player 2
tidb_client.execute("UPDATE players SET balance = balance - 10 WHERE id = 1")
tidb_client.execute("UPDATE players SET balance = balance + 10 WHERE id = 2")

session.commit()
# or session.rollback()

final_total_balance = tidb_client.query("SELECT SUM(balance) FROM players").scalar()
assert final_total_balance == initial_total_balance
```

## Extensions

- 🔌 [Built-in MCP support](https://pingcap.github.io/ai/integrations/mcp)

> [!TIP]
> Click the button below to install **TiDB MCP Server** in Cursor. Then, confirm by clicking **Install** when prompted.
>
> [![Install TiDB MCP Server](https://cursor.com/deeplink/mcp-install-dark.svg)](https://cursor.com/install-mcp?name=TiDB&config=eyJjb21tYW5kIjoidXZ4IC0tZnJvbSBweXRpZGJbbWNwXSB0aWRiLW1jcC1zZXJ2ZXIiLCJlbnYiOnsiVElEQl9IT1NUIjoibG9jYWxob3N0IiwiVElEQl9QT1JUIjoiNDAwMCIsIlRJREJfVVNFUk5BTUUiOiJyb290IiwiVElEQl9QQVNTV09SRCI6IiIsIlRJREJfREFUQUJBU0UiOiJ0ZXN0In19)