Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/pinterest/querybook

Querybook is a Big Data Querying UI, combining collocated table metadata and a simple notebook interface.
https://github.com/pinterest/querybook

analyses celery charting flask hive metastore notebook presto typescript

Last synced: 2 days ago
JSON representation

Querybook is a Big Data Querying UI, combining collocated table metadata and a simple notebook interface.

Awesome Lists containing this project

README

        

# Querybook

![Build Status](https://github.com/pinterest/querybook/workflows/Tests/badge.svg)
[![License](http://img.shields.io/:license-Apache%202-blue.svg)](http://www.apache.org/licenses/LICENSE-2.0.txt)
[![Slack](https://img.shields.io/badge/Slack-Join%20our%20community-brightgreen?style=flat&logo=slack)](https://join.slack.com/t/querybook/shared_invite/zt-se82lvld-yyzRIqvIASsyYozk7jMCYQ)

Querybook is a Big Data IDE that allows you to discover, create, and share data analyses, queries, and tables.
[Check out the full documentation & feature highlights here.](https://querybook.org)

# Features

- 📚 Organize **analyses** with rich text, queries, and charts
- ✏️ Compose queries with **autocompletion** and hovering tooltip
- 📈 Use scheduling + charting in DataDocs to build **dashboards**
- 🙌 Live query **collaborations** with others
- 📝 Add additional **documentation** to your tables
- 🧮 Get lineage, sample queries, frequent user, search ranking based on **past query runs**

# Getting started

## Prerequisite

Please install Docker before trying out Querybook.

## Quick setup

Pull this repo and run `make`. Visit http://localhost:10001 when the build completes.

For more details on installation, [click here](docs_website/docs/setup_guide/overview.mdx)

## Configuration

For infrastructure configuration, [click here](docs_website/docs/configurations/infra_config.mdx)
For general configuration, [click here](docs_website/docs/configurations/general_config.mdx)

## Supported Integrations

### Query Engines

- Presto
- Hive
- Druid
- Snowflake
- Big Query
- MySQL
- Sqlite
- PostgreSQL
- [and many more...](https://www.querybook.org/docs/setup_guide/connect_to_query_engines#all-query-engines)

### Authentication

- User/Password
- OAuth
- Google Cloud OAuth
- Okta OAuth
- GitHub OAuth
- Auth0 OAuth
- LDAP

### Metastore

Can be used to fetch schema and table information for metadata enrichment.

- Hive Metastore
- Sqlalchemy Inspect
- AWS Glue Data Catalog

### Result Storage

Use one of the following to store query results.

- Database (MySQL, Postgres, etc)
- S3
- Google Cloud Storage
- Local file

### Result Export

Upload query results from Querybook to other tools for further analyses.

- Google Sheets Export
- Python export

### Notification

Get notified upon completion of queries and DataDoc invitations via IM or email.

- Email
- Slack

# User Interface

Query Editor
![](./docs_website/static/img/key_features/editor.gif)

Charting
![](./docs_website/static/img/key_features/visualization.gif)

Scheduling
![](./docs_website/static/img/key_features/scheduling.png)

Lineage & Analytics
![](./docs_website/static/img/key_features/analytics.gif)

# Contributing Back

See [CONTRIBUTING](CONTRIBUTING.md).