https://github.com/pinto0309/ssc4onnx
Checker with simple ONNX model structure. Simple Structure Checker for ONNX.
https://github.com/pinto0309/ssc4onnx
cli model-converter models onnx python
Last synced: 3 months ago
JSON representation
Checker with simple ONNX model structure. Simple Structure Checker for ONNX.
- Host: GitHub
- URL: https://github.com/pinto0309/ssc4onnx
- Owner: PINTO0309
- License: mit
- Created: 2022-05-27T11:31:02.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2023-09-24T01:22:52.000Z (about 2 years ago)
- Last Synced: 2025-07-03T00:57:13.220Z (4 months ago)
- Topics: cli, model-converter, models, onnx, python
- Language: Python
- Homepage:
- Size: 28.4 MB
- Stars: 8
- Watchers: 2
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# ssc4onnx
Checker with simple ONNX model structure. **S**imple **S**tructure **C**hecker for **ONNX**.https://github.com/PINTO0309/simple-onnx-processing-tools
[](https://pepy.tech/project/ssc4onnx)  [](https://pypi.org/project/ssc4onnx/) [](https://github.com/PINTO0309/ssc4onnx/actions?query=workflow%3ACodeQL)
![]()
# Key concept
- Analyzes and displays the structure of huge size models that cannot be displayed by Netron.## 1. Setup
### 1-1. HostPC
```bash
### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc### run
$ pip install -U onnx rich onnxruntime \
&& pip install -U ssc4onnx \
&& python -m pip install onnx_graphsurgeon \
--index-url https://pypi.ngc.nvidia.com
```
### 1-2. Docker
https://github.com/PINTO0309/simple-onnx-processing-tools#docker## 2. CLI Usage
```
$ ssc4onnx -husage:
ssc4onnx [-h]
-if INPUT_ONNX_FILE_PATHoptional arguments:
-h, --help
show this help message and exit.-if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
Input onnx file path.
```## 3. In-script Usage
```python
>>> from ssc4onnx import structure_check
>>> help(structure_check)Help on function structure_check in module ssc4onnx.onnx_structure_check:
structure_check(
input_onnx_file_path: Union[str, NoneType] = '',
onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None
) -> Tuple[Dict[str, int], int]Parameters
----------
input_onnx_file_path: Optional[str]
Input onnx file path.
Either input_onnx_file_path or onnx_graph must be specified.
Default: ''onnx_graph: Optional[onnx.ModelProto]
onnx.ModelProto.
Either input_onnx_file_path or onnx_graph must be specified.
onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.Returns
-------
op_num: Dict[str, int]
Num of every op
model_size: int
Model byte size
```## 4. CLI Execution
```bash
$ ssc4onnx -if deqflow_b_things_opset12_192x320.onnx
```## 5. In-script Execution
```python
from ssc4onnx import structure_checkstructure_check(
input_onnx_file_path="deqflow_b_things_opset12_192x320.onnx",
)
```## 6. Sample
https://github.com/PINTO0309/ssc4onnx/releases/download/1.0.6/deqflow_b_things_opset12_192x320.onnxhttps://github.com/PINTO0309/ssc4onnx/assets/33194443/fd6a4aa2-9ed5-492b-82ae-1f8306af5119

## 7. Reference
1. https://github.com/onnx/onnx/blob/main/docs/Operators.md
2. https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
3. https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
4. https://github.com/PINTO0309/simple-onnx-processing-tools
5. https://github.com/PINTO0309/PINTO_model_zoo## 8. Issues
https://github.com/PINTO0309/simple-onnx-processing-tools/issues