Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/pinto0309/whisper-onnx-tensorrt
ONNX and TensorRT implementation of Whisper
https://github.com/pinto0309/whisper-onnx-tensorrt
cupy numpy onnx stt tensorrt whisper
Last synced: 3 months ago
JSON representation
ONNX and TensorRT implementation of Whisper
- Host: GitHub
- URL: https://github.com/pinto0309/whisper-onnx-tensorrt
- Owner: PINTO0309
- License: mit
- Created: 2023-05-22T09:42:08.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2023-05-27T14:57:59.000Z (over 1 year ago)
- Last Synced: 2024-10-03T12:19:20.876Z (4 months ago)
- Topics: cupy, numpy, onnx, stt, tensorrt, whisper
- Language: Python
- Homepage:
- Size: 1.21 MB
- Stars: 55
- Watchers: 4
- Forks: 5
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# whisper-onnx-tensorrt
ONNX and TensorRT implementation of Whisper.This repository has been reimplemented with ONNX and TensorRT using [zhuzilin/whisper-openvino](https://github.com/zhuzilin/whisper-openvino) as a reference.
Enables execution only with onnxruntime with CUDA and TensorRT Excecution Provider enabled, no need to install PyTorch or TensorFlow. All backend logic using PyTorch was rewritten to a Numpy/CuPy implementation from scratch.
Click here for CPU version: https://github.com/PINTO0309/whisper-onnx-cpu
## 1. Environment
Although it can run directly on the host PC, I strongly recommend the use of Docker to avoid breaking the environment.1. Docker
2. NVIDIA GPU (VRAM 16 GB or more recommended)
3. onnx 1.13.1
4. onnxruntime-gpu 1.13.1 (TensorRT Execution Provider custom)
5. CUDA 11.8
6. cuDNN 8.9
7. TensorRT 8.5.3
8. onnx-tensorrt 8.5-GA
9. cupy v12.0.0
10. etc (See Dockerfile.xxx)## 2. Converted Models
https://github.com/PINTO0309/PINTO_model_zoo/tree/main/381_Whisper## 3. Docker run
```bash
git clone https://github.com/PINTO0309/whisper-onnx-tensorrt.git && cd whisper-onnx-tensorrt
```
### 3-1. CUDA ver
```bash
docker run --rm -it --gpus all -v `pwd`:/workdir pinto0309/whisper-onnx-cuda
```
### 3-2. TensorRT ver
```bash
docker run --rm -it --gpus all -v `pwd`:/workdir pinto0309/whisper-onnx-tensorrt
```## 4. Docker build
If you do not need to build the docker image by yourself, you do not need to perform this step.
### 4-1. CUDA ver
```bash
docker build -t whisper-onnx -f Dockerfile.gpu .
```
### 4-2. TensorRT ver
```bash
docker build -t whisper-onnx -f Dockerfile.tensorrt .
```
### 4-3. docker run
```bash
docker run --rm -it --gpus all -v `pwd`:/workdir whisper-onnx
```## 5. Transcribe
- `--model` option
```
tiny.en
tiny
base.en
base
small.en
small
medium.en
medium
large-v1
large-v2
```
- commandThe onnx file is automatically downloaded when the sample is run. Note that `Decoder` is run in CUDA, not TensorRT, because the shape of all input tensors must be undefined. When running the TensorRT version, there is a 5 to 10 minute wait for the compilation process from ONNX to the TensorRT Engine during the first inference. If `--language` is not specified, the tokenizer will auto-detect the language.
```bash
python whisper/transcribe.py xxxx.mp4 --model small --beam_size 3
```
- results
```
Detecting language using up to the first 30 seconds. Use `--language` to specify the language
Detected language: Japanese
[00:00.000 --> 00:07.200] ストレオシンの推定モデルの最適化 としまして 後半のパート2は 実際
[00:07.200 --> 00:11.600] のデモを交えまして 普段私がどのように モデルを最適化して 様々な
[00:11.600 --> 00:15.600] フレームワークの環境でプロイしてる かというのを実際に操作をこの
[00:15.600 --> 00:18.280] 画面上で見ていただきながら ご理解いただけるように努めたい
[00:18.280 --> 00:21.600] と思います それでは早速ですが こちらの
[00:21.600 --> 00:26.320] GitHubの方に本日の公演内容について は すべてチュートリアルをまとめて
[00:26.320 --> 00:31.680] コミットしております 2021.0.20.28 インテルティブラーニング
[00:31.680 --> 00:35.200] でヒットネットデモという ちょっと長い名前なんですけれども 現状
[00:35.200 --> 00:39.120] はプライベートになってますが この公演のタイミングでパブリック
[00:39.120 --> 00:43.440] の方に変更したいと思っております 基本的にはこちらの上から順前
[00:43.440 --> 00:48.000] ですね チュートリアルを謎って いくという形になります
[00:48.000 --> 00:52.640] まず本日対象にするモデルの内容 なんですけれども Google Research
```
- parameters
```
usage: transcribe.py
[-h]
[--model {tiny.en,tiny,base.en,base,small.en,small,medium.en,medium,large-v1,large-v2}]
[--output_dir OUTPUT_DIR]
[--verbose VERBOSE]
[--disable_cupy]
[--task {transcribe,translate}]
[--language {af, am, ...}]
[--temperature TEMPERATURE]
[--best_of BEST_OF]
[--beam_size BEAM_SIZE]
[--patience PATIENCE]
[--length_penalty LENGTH_PENALTY]
[--suppress_tokens SUPPRESS_TOKENS]
[--initial_prompt INITIAL_PROMPT]
[--condition_on_previous_text CONDITION_ON_PREVIOUS_TEXT]
[--temperature_increment_on_fallback TEMPERATURE_INCREMENT_ON_FALLBACK]
[--compression_ratio_threshold COMPRESSION_RATIO_THRESHOLD]
[--logprob_threshold LOGPROB_THRESHOLD]
[--no_speech_threshold NO_SPEECH_THRESHOLD]
audio [audio ...]positional arguments:
audio
audio file(s) to transcribeoptional arguments:
-h, --help
show this help message and exit
--model {tiny.en,tiny,base.en,base,small.en,small,medium.en,medium,large-v1,large-v2}
name of the Whisper model to use
(default: small)
--output_dir OUTPUT_DIR, -o OUTPUT_DIR
directory to save the outputs
(default: .)
--verbose VERBOSE
whether to print out the progress and debug messages
(default: True)
--disable_cupy
When Out of Memory occurs due to insufficient GPU RAM, this option suppresses GPU
RAM consumption.
--task {transcribe,translate}
whether to perform X->X speech recognition ('transcribe') or
X->English translation ('translate')
(default: transcribe)
--language {af, am, ...}
language spoken in the audio, specify None to perform language detection
(default: None)
--temperature TEMPERATURE
temperature to use for sampling
(default: 0)
--best_of BEST_OF
number of candidates when sampling with non-zero temperature
(default: 5)
--beam_size BEAM_SIZE
number of beams in beam search, only applicable when temperature is zero
(default: 5)
--patience PATIENCE
optional patience value to use in beam decoding,
as in https://arxiv.org/abs/2204.05424,
the default (1.0) is equivalent to conventional beam search
(default: None)
--length_penalty LENGTH_PENALTY
optional token length penalty coefficient (alpha) as in
https://arxiv.org/abs/1609.08144, uses simple lengt normalization by default
(default: None)
--suppress_tokens SUPPRESS_TOKENS
comma-separated list of token ids to suppress during sampling;
'-1' will suppress most special characters except common punctuations
(default: -1)
--initial_prompt INITIAL_PROMPT
optional text to provide as a prompt for the first window.
(default: None)
--condition_on_previous_text CONDITION_ON_PREVIOUS_TEXT
if True, provide the previous output of the model as a prompt for the next window;
disabling may make the text inconsistent across windows, but the model becomes
less prone to getting stuck in a failure loop
(default: True)
--temperature_increment_on_fallback TEMPERATURE_INCREMENT_ON_FALLBACK
temperature to increase when falling back when the decoding fails to meet either of
the thresholds below
(default: 0.2)
--compression_ratio_threshold COMPRESSION_RATIO_THRESHOLD
if the gzip compression ratio is higher than this value, treat the decoding as failed
(default: 2.4)
--logprob_threshold LOGPROB_THRESHOLD
if the average log probability is lower than this value, treat the decoding as failed
(default: -1.0)
--no_speech_threshold NO_SPEECH_THRESHOLD
if the probability of the <|nospeech|> token is higher than this value AND
the decoding has failed due to `logprob_threshold`, consider the segment as silence
(default: 0.6)
```
## 6. Languages
https://github.com/PINTO0309/whisper-onnx-tensorrt/blob/main/whisper/tokenizer.py
```
LANGUAGES = {
"en": "english",
"zh": "chinese",
"de": "german",
"es": "spanish",
"ru": "russian",
"ko": "korean",
"fr": "french",
"ja": "japanese",
"pt": "portuguese",
"tr": "turkish",
"pl": "polish",
"ca": "catalan",
"nl": "dutch",
"ar": "arabic",
"sv": "swedish",
"it": "italian",
"id": "indonesian",
"hi": "hindi",
"fi": "finnish",
"vi": "vietnamese",
"iw": "hebrew",
"uk": "ukrainian",
"el": "greek",
"ms": "malay",
"cs": "czech",
"ro": "romanian",
"da": "danish",
"hu": "hungarian",
"ta": "tamil",
"no": "norwegian",
"th": "thai",
"ur": "urdu",
"hr": "croatian",
"bg": "bulgarian",
"lt": "lithuanian",
"la": "latin",
"mi": "maori",
"ml": "malayalam",
"cy": "welsh",
"sk": "slovak",
"te": "telugu",
"fa": "persian",
"lv": "latvian",
"bn": "bengali",
"sr": "serbian",
"az": "azerbaijani",
"sl": "slovenian",
"kn": "kannada",
"et": "estonian",
"mk": "macedonian",
"br": "breton",
"eu": "basque",
"is": "icelandic",
"hy": "armenian",
"ne": "nepali",
"mn": "mongolian",
"bs": "bosnian",
"kk": "kazakh",
"sq": "albanian",
"sw": "swahili",
"gl": "galician",
"mr": "marathi",
"pa": "punjabi",
"si": "sinhala",
"km": "khmer",
"sn": "shona",
"yo": "yoruba",
"so": "somali",
"af": "afrikaans",
"oc": "occitan",
"ka": "georgian",
"be": "belarusian",
"tg": "tajik",
"sd": "sindhi",
"gu": "gujarati",
"am": "amharic",
"yi": "yiddish",
"lo": "lao",
"uz": "uzbek",
"fo": "faroese",
"ht": "haitian creole",
"ps": "pashto",
"tk": "turkmen",
"nn": "nynorsk",
"mt": "maltese",
"sa": "sanskrit",
"lb": "luxembourgish",
"my": "myanmar",
"bo": "tibetan",
"tl": "tagalog",
"mg": "malagasy",
"as": "assamese",
"tt": "tatar",
"haw": "hawaiian",
"ln": "lingala",
"ha": "hausa",
"ba": "bashkir",
"jw": "javanese",
"su": "sundanese",
}
```