Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/piotr-kalanski/splot
Scala library for data visualization.
https://github.com/piotr-kalanski/splot
chart charts data-visualization plot plots plotting scala scala-library visualization
Last synced: 2 months ago
JSON representation
Scala library for data visualization.
- Host: GitHub
- URL: https://github.com/piotr-kalanski/splot
- Owner: piotr-kalanski
- License: apache-2.0
- Created: 2017-04-12T17:01:43.000Z (over 7 years ago)
- Default Branch: development
- Last Pushed: 2017-04-28T23:28:51.000Z (over 7 years ago)
- Last Synced: 2024-10-11T04:47:35.355Z (3 months ago)
- Topics: chart, charts, data-visualization, plot, plots, plotting, scala, scala-library, visualization
- Language: Scala
- Size: 1020 KB
- Stars: 10
- Watchers: 2
- Forks: 1
- Open Issues: 10
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# SPlot
SPlot is Scala library for data visualization.
[![Build Status](https://api.travis-ci.org/piotr-kalanski/SPlot.png?branch=development)](https://api.travis-ci.org/piotr-kalanski/SPlot.png?branch=development)
[![codecov.io](http://codecov.io/github/piotr-kalanski/SPlot/coverage.svg?branch=development)](http://codecov.io/github/piotr-kalanski/SPlot/coverage.svg?branch=development)
[](http://search.maven.org/#search|ga|1|a%3A%22splot%22)
[![License](http://img.shields.io/:license-Apache%202-red.svg)](http://www.apache.org/licenses/LICENSE-2.0.txt)# Table of contents
- [Goals](#goals)
- [Getting started](#getting-started)
- [API possibilities](#api-possibilities)
- [Supported charts](#supported-charts)
- [Multiple charts](#multiple-charts)
- [Aggregation functions](#aggregation-functions)
- [Saving plot to file](#saving-plot-to-file)
- [Customizations](#customizations)# Goals
- Provide simple API in Scala for data visualization similar to ggplot (http://ggplot2.org/) and Seaborn (https://seaborn.pydata.org/)
- Support exploratory data analysisCurrently project is **NOT** focused on:
- Performance
- Rich possibilities for customization# Getting started
Include dependency:
```scala
"com.github.piotr-kalanski" % "splot" % "0.2.0"
```or
```xml
com.github.piotr-kalanski
splot
0.2.0```
Import implicits, which adds methods to Scala collection enabling plotting:
```scala
import com.datawizards.splot.api.implicits._
```## Basic example
To plot bar chart using Scala sequence you need to call one method:
```scala
import com.datawizards.splot.api.implicits._Seq(1.0, 4.0, 9.0).plotBar()
```![](images/basic_bar.png)
# API possibilities
SPlot provides two API's for displaying plots:
## Additional methods on collections
First API enrich Scala collections providing additional methods for plotting charts.
Examples:
```scala
val data = Seq((1,1),(2,2))// Plot bar chart:
data.plotBar()// Plot line chart:
data.plotLine()// Plot scatter chart:
data.plotScatter()// Start building plot:
data.buildPlot()
```## Providing independently axis values
Second API provides possibility to independently provide x and y values.
Examples:
```scala
// Plot bar chart:
SPlot.plotBar(Seq(1,2), Seq(1,4))// Plot line chart:
SPlot.plotLine(Seq(1,2), Seq(1,4))// Plot scatter chart:
SPlot.plotScatter(Seq(1,2), Seq(1,4))// Start building plot:
SPlot.buildPlot(Seq(1,2), Seq(1,4))
```# Supported charts
- [Bar](#bar)
- [Scatter](#scatter)
- [Line](#line)
- [Histogram](#histogram)
- [Bubble](#bubble)
- [Pie](#pie)
- [Area](#area)> Please note that all below examples **require** importing:
```scala
import com.datawizards.splot.api.implicits._
```> Please also note that most of below examples are based on randomly generated data!
## Bar
### Bar chart for sequence of numbers
```scala
val data = Seq(1.0, 4.0, 9.0)
data.plotBar()
```### Bar chart for sequence of case class
```scala
case class Person(name: String, age: Int)val data = Seq(
Person("p1", 45),
Person("p2", 85),
Person("p3", 78)
)data.plotBar(_.age)
```![](images/bar_people.png)
### Bar chart for categorical data
```scala
val populationByCountry = Seq(
("DE", 81),
("TR", 72),
("FR", 63),
("UK", 62),
("IT", 61),
("ES", 46),
("UA", 45),
("PL", 38),
("RO", 19),
("NL", 17),
("GR", 11),
("PT", 11),
("BE", 10),
("CZ", 10),
("HU", 10)
)populationByCountry
.buildPlot()
.bar(_._1, _._2)
.titles("Population by country [millions]", "Country", "Population")
.size(1200, 300)
.legendVisible(false)
.display()
```![](images/bar_chart_with_string.png)
## Scatter
### Scatter chart for sequence of numbers
```scala
val data = Seq(
(1.0, 1.0),
(2.0, 4.0),
(3.0, 9.0)
)data.plotScatter()
```![](images/scatter_basic.png)
### Scatter chart for sequence of case class
```scala
case class AgeIncome(age: Int, income: Double)val data = Seq(
AgeIncome(20, 1000.0),
AgeIncome(25, 2000.0),
AgeIncome(30, 2500.0),
AgeIncome(35, 3000.0),
AgeIncome(40, 3500.0),
AgeIncome(45, 3000.0),
AgeIncome(50, 2500.0)
)data.plotScatter(_.age, _.income)
```![](images/scatter_age_income.png)
## Line
### Line chart for sequence of numbers
```scala
val data = Seq(
(1.0, 1.0),
(2.0, 4.0),
(3.0, 9.0)
)data.plotLine()
```![](images/line_basic.png)
### Line chart for sequence of case class
```scala
case class AgeIncome(age: Int, income: Double)val data = Seq(
AgeIncome(20, 1000.0),
AgeIncome(25, 2000.0),
AgeIncome(30, 2500.0),
AgeIncome(35, 3000.0),
AgeIncome(40, 3500.0),
AgeIncome(45, 3000.0),
AgeIncome(50, 2500.0)
)data.plotLine(_.age, _.income)
```![](images/line_age_income.png)
### Line chart for timeseries data
```scala
timeseriesData2017.plotLine()
```![](images/line_timeseries.png)
## Histogram
### Histogram for sequence of numbers
```scala
val rand = new Random()
val gaussians = for(i <- 1 to 10000) yield rand.nextGaussian()
gaussians.plotHistogram(100)
```![](images/histogram_for_gaussians.png)
### Histogram for categorical data
```scala
people
.buildPlot()
.histogramForCategories(_.education)
.size(400, 300)
.titles("People by education", "Education", "Count")
.legendVisible(false)
.display()
```![](images/histogram_for_categories.png)
## Bubble chart
```scala
Seq(
(1, 1, 9.0),
(1, 2, 40.0),
(3, 2, 60.0),
(2, 2, 90.0),
(1, 3, 30.0),
(2, 3, 40.0)
)
.buildPlot()
.bubble(_._1, _._2, _._3)
.display()
```![](images/bubble_chart.png)
## Pie
```scala
Seq(
("DE", 81),
("TR", 72),
("FR", 63),
("UK", 62),
("IT", 61)
)
.plotPie()
```![](images/pie_chart.png)
## Area
```scala
Seq(
(1.0, 1.0),
(2.0, 4.0),
(3.0, 9.0)
)
.plotArea()
```![](images/area_chart.png)
# Multiple series
```scala
people
.buildPlot()
.scatter(_.age, _.income)
.seriesBy(_.education)
.size(500, 400)
.titles("Age and income by education", "age", "income")
.display()
```![](images/scatter_chart_with_multiple_series.png)
# Multiple charts
## Grouping by cols
### Scatter plot
```scala
people
.buildPlot()
.scatter(_.age, _.income)
.colsBy(_.country)
.display()
```![](images/people_groupby_country.png)
### Histogram
```scala
people
.buildPlot()
.colsBy(_.education)
.histogram(_.age, 50)
.size(1200, 400)
.display()
```![](images/histogram_multiple_columns.png)
## Grouping by rows
```scala
people
.buildPlot()
.scatter(_.age, _.income)
.rowsBy(_.education)
.display()
```![](images/people_groupby_education.png)
## Grouping by cols and/or rows
### Scatter plot
```scala
people
.buildPlot()
.scatter(_.age, _.income)
.colsBy(_.country)
.rowsBy(_.education)
.display()
```![](images/people_groupby_country_education.png)
### Bar plot
```scala
val groupedPeopleByCountryEducation = people
.groupBy(p => (p.country, p.education))
.mapValues(pv => pv.size)groupedPeopleByCountryEducation
.buildPlot()
.colsBy(_._1._1)
.bar(x => x._1._2, x => x._2)
.size(1200, 300)
.display()
```![](images/bar_chart_grids_with_string.png)
## Multiple columns and series
```scala
people
.buildPlot()
.scatter(_.age, _.income)
.size(1200, 300)
.colsBy(_.country)
.seriesBy(_.education)
.display()
```![](images/scatter_chart_with_multiple_columns_and_series.png)
# Aggregation functions
SPlot enables aggregating your data before displaying chart.
To start using functions you need to import:
```scala
import com.datawizards.splot.functions._
```Currently supported aggregation functions:
- count
- mean
- sum## Calculating count
```scala
people
.buildPlot()
.barWithAggregations(_.education, count())
```![](images/bar_chart_with_count_aggregation.png)
## Calculating mean
```scala
people
.buildPlot()
.barWithAggregations(_.country, mean(_.income))
```![](images/bar_chart_with_mean_aggregation.png)
## Calculating sum
```scala
people
.buildPlot()
.barWithAggregations(_.country, sum(_.income))
```# Saving plot to file
To save plot to file you need to call method *save()* instead of calling *display()*.
```scala
import com.datawizards.splot.model.ImageFormatsSeq(1.0, 4.0, 9.0)
.buildPlot()
.bar()
.save("chart.png", ImageFormats.PNG)
```Currently supported image formats:
- BMP
- PNG
- JPG
- GIF
- EPS
- SVG# Customizations
## Change chart title
```scala
val data = Seq(1.0, 4.0, 9.0)data
.buildPlot()
.bar()
.titles("Example bar chart", "x values", "y values")
.display()
```## Change chart size (width, height)
```scala
val data = Seq(1.0, 4.0, 9.0)data
.buildPlot()
.bar()
.size(1600, 1200)
.display()
```## Change series name
```scala
Seq(1.0, 4.0, 9.0)
.buildPlot()
.bar()
.seriesName("custom name")
.display()
```![](images/bar_chart_custom_series_name.png)
## Hide legend
```scala
Seq(1.0, 4.0, 9.0)
.buildPlot()
.bar()
.legendVisible(false)
.display()
```![](images/bar_chart_hide_legend.png)
## Chart themes
Currently supported themes:
![](images/ggplot_theme.png) ![](images/matplot_theme.png) ![](images/xchart_theme.png) ![](images/splot_theme.png)
To change theme you need to call method *theme()*:
```scala
data
.buildPlot()
.bar()
.theme(PlotTheme.GGPlot2)
.display()
```## Annotations
```scala
Seq(1, 4, 9)
.buildPlot()
.bar()
.showAnnotations(true)
.display()
```![](images/annotations.png)
# Bugs
Please report any bugs or submit feature requests to [SPlot Github issue tracker](https://github.com/piotr-kalanski/SPlot/issues).
# Credits
| Library | Category | License |
| ------- | -------- | ------- |
| [XChart](https://github.com/timmolter/XChart) | Graphing | [Apache 2.0](http://www.apache.org/licenses/LICENSE-2.0) |# Contact