Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/plaitpy/plaitpy
plait.py - a fake data modeler
https://github.com/plaitpy/plaitpy
declarative modeling synthetic-data
Last synced: about 1 month ago
JSON representation
plait.py - a fake data modeler
- Host: GitHub
- URL: https://github.com/plaitpy/plaitpy
- Owner: plaitpy
- License: mit
- Created: 2017-12-22T01:41:45.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2018-12-27T02:32:51.000Z (almost 6 years ago)
- Last Synced: 2024-09-26T08:19:17.934Z (3 months ago)
- Topics: declarative, modeling, synthetic-data
- Language: Python
- Homepage:
- Size: 1 MB
- Stars: 430
- Watchers: 11
- Forks: 22
- Open Issues: 4
-
Metadata Files:
- Readme: README.md
- License: LICENSE.txt
Awesome Lists containing this project
- awesome-privacy-engineering - plaitpy - plait.py is a program for generating fake data from composable yaml templates. (Awesome Privacy Engineering [![Awesome](https://awesome.re/badge.svg)](https://awesome.re) / Synthetic Data)
- awesome-data-synthesis - plaitpy
README
## plait.py
plait.py is a program for generating fake data from composable yaml templates.
The idea behind plait.py is that it should be easy to model fake data that
has an interesting shape. Currently, many fake data generators model their data as a
collection of
[IID](https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables)
variables; with plait.py we can stitch together those variables into a more
coherent model.some example uses for plait.py are:
* generating mock application data in test environments
* validating the usefulness of statistical techniques
* creating synthetic datasets for performance tuning databases### features
* declarative syntax
* use basic [faker.rb](https://github.com/stympy/faker) fields with #{} interpolators
* sample and join data from CSV files
* lambda expressions, switch and mixture fields
* nested and composable templates
* static variables and hidden fields### an example template
# a person generator
define:
min_age: 10
minor_age: 13
working_age: 18fields:
age:
random: gauss(25, 5)
# minimum age is $min_age
finalize: max($min_age, value)gender:
mixture:
- value: M
- value: Fname: "#{name.name}"
job:
value: "#{job.title}"
onlyif: this.age > $working_ageaddress:
template: address/usa.yaml
phone: # add a phone if the person is older than the minor age
template: device/phone.yaml
onlyif: this.age > ${minor_age}# we model our height as a gaussian that varies based on
# age and gender
height:
lambda: this._base_height * this._age_factor
_base_height:
switch:
- onlyif: this.gender == "F"
random: gauss(60, 5)
- onlyif: this.gender == "M"
random: gauss(70, 5)_age_factor:
switch:
- onlyif: this.age < 15
lambda: 1 - (20 - (this.age + 5)) / 20
- default:
value: 1### how its different
some specific examples of what plait.py can do:
* generate proportional populations using census data and CSVs
* create realistic zipcodes by state, city or region (also using CSVs)
* create a taxi trip dataset with a cost model based on geodistance
* add seasonal patterns (daily, weekly, etc) to data## usage
### installation
# install with python
pip install plaitpy# or with pypy
pypy-pip install plaitpy### cloning the repo for development
git clone https://github.com/plaitpy/plaitpy
# get the fakerb repo
git submodule init
git submodule update### generating records from command line
specify a template as a yaml file, then generate records from that yaml file.
# a simple example (if cloning plait.py repo)
python main.py templates/timestamp/uniform.yaml# if plait.py is installed via pip
plait.py templates/timestamp/uniform.yaml### generating records from API
import plaitpy
t = plaitpy.Template("templates/timestamp/uniform.yaml")
print t.gen_record()
print t.gen_records(10)### looking up faker fields
plait.py also simplifies looking up faker fields:
# list faker namespaces
plait.py --list
# lookup faker namespaces
plait.py --lookup name# lookup faker keys
# (-ll is short for --lookup)
plait.py --ll name.suffix## documentation
### yaml file commands
* see docs/FORMAT.md
### datasets
* see docs/EXAMPLES.md
* also see templates/ dir### troubleshooting
* see docs/TROUBLESHOOTING.md
### Dependent Markov Processes
To simulate data that comes from many markov processes (a markov ecosystem),
see the [plaitpy-ipc](https://github.com/plaitpy/plaitpy-ipc) repository.### future direction
If you have ideas on features to add, open an issue - Feedback is appreciated!
### License
[MIT](https://github.com/plaitpy/plaitpy/blob/master/LICENSE.txt)