Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/plandes/nlparse

Natural language processing parsing and tool library
https://github.com/plandes/nlparse

natural-language-processing nlp-machine-learning pypi-badge pypi-link spacy spacy-nlp

Last synced: 2 months ago
JSON representation

Natural language processing parsing and tool library

Awesome Lists containing this project

README

        

# Zensols Natural Language Parsing

[![PyPI][pypi-badge]][pypi-link]
[![Python 3.10][python310-badge]][python310-link]
[![Python 3.11][python311-badge]][python311-link]
[![Build Status][build-badge]][build-link]

From the paper [DeepZensols: A Deep Learning Natural Language Processing
Framework for Experimentation and Reproducibility]. This framework wraps the
[spaCy] framework and creates light weight features in a class [hierarchy] that
reflects the structure of natural language. The motivation is to generate
features from the parsed text in an object oriented fashion that is fast and
easy to pickle.

Other features include:
* [Parse and normalize] a stream of tokens as stop words, punctuation
filters, up/down casing, porter stemming and [others].
* [Detached features] that are safe and easy to pickle to disk.
* Configuration drive parsing and token normalization using [configuration
factories].
* Pretty print functionality for easy natural language feature selection.
* A comprehensive [scoring module] including following scoring methods:
* [Rouge]
* [Bleu]
* [SemEval-2013 Task 9.1]
* [Levenshtein distance]
* Exact match

## Documentation

* [Framework documentation]
* [Natural Language Parsing]
* [List Token Normalizers and Mappers]

## Obtaining / Installing

The easiest way to install the command line program is via the `pip`
installer. Since the package needs at least one spaCy module, the second
command downloads the smallest model.
```bash
pip3 install --use-deprecated=legacy-resolver zensols.nlp
python -m spacy download en_core_web_sm
```

Binaries are also available on [pypi].

## Usage

A parser using the default configuration can be obtained by:
```python
from zensols.nlp import FeatureDocumentParser
parser: FeatureDocumentParser = FeatureDocumentParser.default_instance()
doc = parser('Obama was the 44th president of the United States.')
for tok in doc.tokens:
print(tok.norm, tok.pos_, tok.tag_)
print(doc.entities)

>>>
Obama PROPN NNP
was AUX VBD
the DET DT
45th ADJ JJ
president NOUN NN
of ADP IN
the United States DET DT
. PUNCT .
(, <45th>, )
```

However, minimal effort is needed to configure the parser using a [resource library]:
```python
from io import StringIO
from zensols.config import ImportIniConfig, ImportConfigFactory
from zensols.nlp import FeatureDocument, FeatureDocumentParser

CONFIG = """
# import the `zensols.nlp` library
[import]
config_file = resource(zensols.nlp): resources/obj.conf

# override the parse to keep only the norm, ent
[doc_parser]
token_feature_ids = set: ent_, tag_
"""

if (__name__ == '__main__'):
fac = ImportConfigFactory(ImportIniConfig(StringIO(CONFIG)))
doc_parser: FeatureDocumentParser = fac('doc_parser')
sent = 'He was George Washington and first president of the United States.'
doc: FeatureDocument = doc_parser(sent)
for tok in doc.tokens:
tok.write()
```

This uses a [resource library] to source in the configuration from this package
so minimal configuration is necessary. More advanced configuration [examples]
are also available.

See the [feature documents] for more information.

## Scoring

Certain scores in the [scoring module] need additional Python packages. These
are installed with:
```bash
pip install -R src/python/requirements-score.txt
```

## Attribution

This project, or example code, uses:
* [spaCy] for natural language parsing
* [msgpack] and [smart-open] for Python disk serialization
* [nltk] for the [porter stemmer] functionality

## Citation

If you use this project in your research please use the following BibTeX entry:

```bibtex
@inproceedings{landes-etal-2023-deepzensols,
title = "{D}eep{Z}ensols: A Deep Learning Natural Language Processing Framework for Experimentation and Reproducibility",
author = "Landes, Paul and
Di Eugenio, Barbara and
Caragea, Cornelia",
editor = "Tan, Liling and
Milajevs, Dmitrijs and
Chauhan, Geeticka and
Gwinnup, Jeremy and
Rippeth, Elijah",
booktitle = "Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023)",
month = dec,
year = "2023",
address = "Singapore, Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.nlposs-1.16",
pages = "141--146"
}
```

## Changelog

An extensive changelog is available [here](CHANGELOG.md).

## Community

Please star this repository and let me know how and where you use this API.
Contributions as pull requests, feedback and any input is welcome.

## License

[MIT License](LICENSE.md)

Copyright (c) 2020 - 2023 Paul Landes

[pypi]: https://pypi.org/project/zensols.nlp/
[pypi-link]: https://pypi.python.org/pypi/zensols.nlp
[pypi-badge]: https://img.shields.io/pypi/v/zensols.nlp.svg
[python310-badge]: https://img.shields.io/badge/python-3.10-blue.svg
[python310-link]: https://www.python.org/downloads/release/python-3100
[python311-badge]: https://img.shields.io/badge/python-3.11-blue.svg
[python311-link]: https://www.python.org/downloads/release/python-3110
[build-badge]: https://github.com/plandes/nlparse/workflows/CI/badge.svg
[build-link]: https://github.com/plandes/nlparse/actions

[DeepZensols: A Deep Learning Natural Language Processing Framework for Experimentation and Reproducibility]: https://aclanthology.org/2023.nlposs-1.16.pdf
[examples]: https://github.com/plandes/nlparse/tree/master/example/config

[hierarchy]: https://plandes.github.io/nlparse/api/zensols.nlp.html#zensols.nlp.container.FeatureDocument
[Parse and normalize]: https://plandes.github.io/nlparse/doc/parse.html
[others]: https://plandes.github.io/nlparse/doc/normalizers.html
[Detached features]: https://plandes.github.io/nlparse/doc/parse.html#detached-features
[full documentation]: https://plandes.github.io/nlparse/
[Framework documentation]: https://plandes.github.io/nlparse/api.html
[Natural Language Parsing]: https://plandes.github.io/nlparse/doc/parse.html
[List Token Normalizers and Mappers]: https://plandes.github.io/nlparse/doc/normalizers.html
[resource library]: https://plandes.github.io/util/doc/config.html#resource-libraries

[spaCy]: https://spacy.io
[nltk]: https://www.nltk.org
[smart-open]: https://pypi.org/project/smart-open/
[msgpack]: https://msgpack.org
[porter stemmer]: https://tartarus.org/martin/PorterStemmer/

[configuration factories]: https://plandes.github.io/util/doc/config.html#configuration-factory
[feature documents]: https://plandes.github.io/nlparse/doc/feature-doc.html
[scoring module]: https://plandes.github.io/nlparse/api/zensols.nlp.html#zensols-nlp-score
[Rouge]: https://aclanthology.org/W04-1013
[Bleu]: https://aclanthology.org/P02-1040
[SemEval-2013 Task 9.1]: https://web.archive.org/web/20150131105418/https://www.cs.york.ac.uk/semeval-2013/task9/data/uploads/semeval_2013-task-9_1-evaluation-metrics.pdf
[Levenshtein distance]: https://en.wikipedia.org/wiki/Levenshtein_distance