https://github.com/plar/go-adaptive-radix-tree
Adaptive Radix Trees implemented in Go
https://github.com/plar/go-adaptive-radix-tree
go trie
Last synced: 7 days ago
JSON representation
Adaptive Radix Trees implemented in Go
- Host: GitHub
- URL: https://github.com/plar/go-adaptive-radix-tree
- Owner: plar
- License: mit
- Created: 2016-04-01T01:40:40.000Z (about 9 years ago)
- Default Branch: master
- Last Pushed: 2024-12-16T22:23:27.000Z (4 months ago)
- Last Synced: 2025-03-14T09:19:59.390Z (30 days ago)
- Topics: go, trie
- Language: Go
- Homepage:
- Size: 2.85 MB
- Stars: 385
- Watchers: 8
- Forks: 57
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-go - go-adaptive-radix-tree - Go implementation of Adaptive Radix Tree. (Data Structures and Algorithms / Text Analysis)
- awesome-go - go-adaptive-radix-tree - Go implementation of Adaptive Radix Tree. (Data Structures and Algorithms / Text Analysis)
- awesome-go - go-adaptive-radix-tree - Adaptive Radix Trees implemented in Go - ★ 48 (Data Structures)
- awesome-go-extra - go-adaptive-radix-tree - 04-01T01:40:40Z|2020-08-16T07:15:37Z| (Generators / Text Analysis)
README
An Adaptive Radix Tree Implementation in Go
====[](https://coveralls.io/github/plar/go-adaptive-radix-tree?branch=master) [](https://goreportcard.com/report/github.com/plar/go-adaptive-radix-tree) [](https://pkg.go.dev/github.com/plar/go-adaptive-radix-tree/v2)
This library provides a Go implementation of the Adaptive Radix Tree (ART).
Features:
* Lookup performance surpasses highly tuned alternatives
* Support for highly efficient insertions and deletions
* Space efficient
* Performance is comparable to hash tables
* Maintains the data in sorted order, which enables additional operations like range scan and prefix lookup
> Keys are sorted **lexicographically** based on their byte values.
* `O(k)` search/insert/delete operations, where `k` is the length of the key
* Minimum / Maximum value lookups
* Ordered iteration
* Prefix-based iteration
* Reverse iteration support
* Support for keys with null bytes, any byte array could be a key# Usage
[The Go playground](https://go.dev/play/p/tBJa0d50eOp)
```go
package mainimport (
"fmt"
art "github.com/plar/go-adaptive-radix-tree/v2"
)func main() {
// Initialize a new Adaptive Radix Tree
tree := art.New()// Insert key-value pairs into the tree
tree.Insert(art.Key("apple"), "A sweet red fruit")
tree.Insert(art.Key("banana"), "A long yellow fruit")
tree.Insert(art.Key("cherry"), "A small red fruit")
tree.Insert(art.Key("date"), "A sweet brown fruit")// Search for a value by key
if value, found := tree.Search(art.Key("banana")); found {
fmt.Println("Found:", value)
} else {
fmt.Println("Key not found")
}// Iterate over the tree in ascending order
fmt.Println("\nAscending order iteration:")
tree.ForEach(func(node art.Node) bool {
fmt.Printf("Key: %s, Value: %s\n", node.Key(), node.Value())
return true
})// Iterate over the tree in descending order using reverse traversal
fmt.Println("\nDescending order iteration:")
tree.ForEach(func(node art.Node) bool {
fmt.Printf("Key: %s, Value: %s\n", node.Key(), node.Value())
return true
}, art.TraverseReverse)// Iterate over keys with a specific prefix
fmt.Println("\nIteration with prefix 'c':")
tree.ForEachPrefix(art.Key("c"), func(node art.Node) bool {
fmt.Printf("Key: %s, Value: %s\n", node.Key(), node.Value())
return true
})
}// Expected Output:
// Found: A long yellow fruit
//
// Ascending order iteration:
// Key: apple, Value: A sweet red fruit
// Key: banana, Value: A long yellow fruit
// Key: cherry, Value: A small red fruit
// Key: date, Value: A sweet brown fruit
//
// Descending order iteration:
// Key: date, Value: A sweet brown fruit
// Key: cherry, Value: A small red fruit
// Key: banana, Value: A long yellow fruit
// Key: apple, Value: A sweet red fruit
//
// Iteration with prefix 'c':
// Key: cherry, Value: A small red fruit
```# Documentation
Check out the documentation on [pkg.go.dev/github.com/plar/go-adaptive-radix-tree/v2](https://pkg.go.dev/github.com/plar/go-adaptive-radix-tree/v2).
# Migration from v1 to v2
- update `import` statement
```
from `art "github.com/plar/go-adaptive-radix-tree"`
to `art "github.com/plar/go-adaptive-radix-tree/v2"`
```- update go module dependency
```
$ go get github.com/plar/go-adaptive-radix-tree/v2
$ go mod tidy
```If you had implemented your own version of the `Tree` interface, then you need to update the following method to support `options`. These are the only changes in the interface.
```
ForEachPrefix(keyPrefix Key, callback Callback, options ...int)
```# Performance
[plar/go-adaptive-radix-tree](https://github.com/plar/go-adaptive-radix-tree) outperforms [kellydunn/go-art](https://github.com/kellydunn/go-art) by avoiding memory allocations during search operations.
It also provides prefix based and reverse iteration over the tree.Benchmarks were performed on datasets extracted from different projects:
- The "Words" dataset contains a list of 235,886 english words. [2]
- The "UUIDs" dataset contains 100,000 uuids. [2]
- The "HSK Words" dataset contains 4,995 words. [4]|**go-adaptive-radix-tree**| # | Average time |Bytes per operation|Allocs per operation |
|:-------------------------|---:|------------------:|------------------:|--------------------:|
| Tree Insert Words | 9 | 117,888,698 ns/op | 37,942,744 B/op | 1,214,541 allocs/op |
| Tree Search Words | 26 | 44,555,608 ns/op | 0 B/op | 0 allocs/op |
| Tree Insert UUIDs | 18 | 59,360,135 ns/op | 18,375,723 B/op | 485,057 allocs/op |
| Tree Search UUIDs | 54 | 21,265,931 ns/op | 0 B/op | 0 allocs/op |
|**go-art** | | | | |
| Tree Insert Words | 5 | 272,047,975 ns/op | 81,628,987 B/op | 2,547,316 allocs/op |
| Tree Search Words | 10 | 129,011,177 ns/op | 13,272,278 B/op | 1,659,033 allocs/op |
| Tree Insert UUIDs | 10 | 140,309,246 ns/op | 33,678,160 B/op | 874,561 allocs/op |
| Tree Search UUIDs | 20 | 82,120,943 ns/op | 3,883,131 B/op | 485,391 allocs/op |To see more benchmarks just run
```
$ ./make qa/benchmarks
```# References
[1] [The Adaptive Radix Tree: ARTful Indexing for Main-Memory Databases (Specification)](http://www-db.in.tum.de/~leis/papers/ART.pdf)
[2] [C99 implementation of the Adaptive Radix Tree](https://github.com/armon/libart)
[3] [Another Adaptive Radix Tree implementation in Go](https://github.com/kellydunn/go-art)
[4] [HSK Words](http://hskhsk.pythonanywhere.com/hskwords). HSK(Hanyu Shuiping Kaoshi) - Standardized test of Standard Mandarin Chinese proficiency.