Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ploomber/soorgeon
Convert monolithic Jupyter notebooks 📙 into maintainable Ploomber pipelines. 📊
https://github.com/ploomber/soorgeon
data-engineering data-science jupyter jupyter-notebooks machine-learning mlops workflow
Last synced: about 11 hours ago
JSON representation
Convert monolithic Jupyter notebooks 📙 into maintainable Ploomber pipelines. 📊
- Host: GitHub
- URL: https://github.com/ploomber/soorgeon
- Owner: ploomber
- License: apache-2.0
- Created: 2021-11-12T21:24:29.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2024-01-25T01:00:54.000Z (12 months ago)
- Last Synced: 2024-04-25T20:20:57.150Z (9 months ago)
- Topics: data-engineering, data-science, jupyter, jupyter-notebooks, machine-learning, mlops, workflow
- Language: Python
- Homepage: https://ploomber.io
- Size: 478 KB
- Stars: 73
- Watchers: 7
- Forks: 19
- Open Issues: 16
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
README
# Soorgeon
> [!TIP]
> Deploy AI apps for free on [Ploomber Cloud!](https://ploomber.io/?utm_medium=github&utm_source=soorgeon)
Join our community
|
Newsletter
|
Contact us
|
Blog
|
Website
|
YouTube![header](_static/header.png)
Convert monolithic Jupyter notebooks into [Ploomber](https://github.com/ploomber/ploomber) pipelines.
https://user-images.githubusercontent.com/989250/150660392-559eca67-b630-4ef2-b660-4f5ddb5a8d65.mp4
[3-minute video tutorial](https://www.youtube.com/watch?v=EJecqsZBr3Q).
*Note: Soorgeon is in alpha, [help us make it better](CONTRIBUTING.md).*
## Install
*Compatible with Python 3.7 and higher.*
```sh
pip install soorgeon
```## Usage
### [Optional] Testing if the notebook runs
Before refactoring, you can optionally test if the original notebook or script runs without exceptions:
```sh
# works with ipynb files
soorgeon test path/to/notebook.ipynb# and notebooks in percent format
soorgeon test path/to/notebook.py
```Optionally, set the path to the output notebook:
```sh
soorgeon test path/to/notebook.ipynb path/to/output.ipynbsoorgeon test path/to/notebook.py path/to/output.ipynb
```### Refactoring
To refactor your notebook:
```sh
# refactor notebook
soorgeon refactor nb.ipynb# all variables with the df prefix are stored in csv files
soorgeon refactor nb.ipynb --df-format csv
# all variables with the df prefix are stored in parquet files
soorgeon refactor nb.ipynb --df-format parquet# store task output in 'some-directory' (if missing, this defaults to 'output')
soorgeon refactor nb.ipynb --product-prefix some-directory# generate tasks in .py format
soorgeon refactor nb.ipynb --file-format py# use alternative serializer (cloudpickle or dill) if notebook
# contains variables that cannot be serialized using pickle
soorgeon refactor nb.ipynb --serializer cloudpickle
soorgeon refactor nb.ipynb --serializer dill
```To learn more, check out our [guide](doc/guide.md).
### Cleaning
Soorgeon has a `clean` command that applies
[black](https://github.com/psf/black) for `.ipynb` and `.py` files:```
soorgeon clean path/to/notebook.ipynb
```or
```
soorgeon clean path/to/script.py
```## Linting
Soorgeon has a `lint` command that can apply [flake8]:
```
soorgeon lint path/to/notebook.ipynb
```or
```
soorgeon lint path/to/script.py
```## Examples
```sh
git clone https://github.com/ploomber/soorgeon
```Exploratory data analysis notebook:
```sh
cd soorgeon/examples/exploratory
soorgeon refactor nb.ipynb# to run the pipeline
pip install -r requirements.txt
ploomber build
```Machine learning notebook:
```sh
cd soorgeon/examples/machine-learning
soorgeon refactor nb.ipynb# to run the pipeline
pip install -r requirements.txt
ploomber build
```To learn more, check out our [guide](doc/guide.md).
## Community
* [Join us on Slack](https://ploomber.io/community)
* [Newsletter](https://www.getrevue.co/profile/ploomber)
* [YouTube](https://www.youtube.com/channel/UCaIS5BMlmeNQE4-Gn0xTDXQ)
* [Contact the development team](mailto:[email protected])## About Ploomber
Ploomber is a big community of data enthusiasts pushing the boundaries of Data Science and Machine Learning tooling.
Whatever your skillset is, you can contribute to our mission. So whether you're a beginner or an experienced professional, you're welcome to join us on this journey!
[Click here to know how you can contribute to Ploomber.](https://github.com/ploomber/contributing/blob/main/README.md)