Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/pmdartus/gaussianmixturemodel
Simple binary classification using EM algorithm
https://github.com/pmdartus/gaussianmixturemodel
Last synced: 8 days ago
JSON representation
Simple binary classification using EM algorithm
- Host: GitHub
- URL: https://github.com/pmdartus/gaussianmixturemodel
- Owner: pmdartus
- Created: 2014-11-12T02:16:17.000Z (about 10 years ago)
- Default Branch: master
- Last Pushed: 2015-01-02T04:15:58.000Z (almost 10 years ago)
- Last Synced: 2024-10-18T19:01:21.996Z (28 days ago)
- Language: Python
- Size: 324 KB
- Stars: 1
- Watchers: 2
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# GaussianMixtureModel
Simple binary classification using EM algorithm
## Usage
```
pip install requirements.txt
python main.py
```## Optional parameters
* **-v --verbose**: Make it speak
* **-m --initMethod**: Select a specific method to initialize the EM algorithm. Available methods: *random*, *K-Means*, *Guess*. (default: *Guess*)
* **-K --nbCluster**: Required to use the *random* and *K-Means* init method. Execute the EM algorithm with a specific number of clusters. (default: 4)
* **-d --dimensions**: Number of dimensions to consider. (default: 2)## Data Format
Each line of the data file represent a sample in the below format:```
Feature-Dim1 Feature-Dim2 [...] Feature-N Class-Label
```