Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/pochih/CBIR

🏞 A content-based image retrieval (CBIR) system
https://github.com/pochih/CBIR

computer-vision daisy edges feature-fusion gabor histogram hog image-retrieval random-projection resnet vggnet

Last synced: 3 months ago
JSON representation

🏞 A content-based image retrieval (CBIR) system

Awesome Lists containing this project

README

        

[![Open Source Love](https://badges.frapsoft.com/os/v1/open-source-150x25.png?v=103)](https://github.com/ellerbrock/open-source-badges/)

## Intro
__This repository contains a CBIR (content-based image retrieval) system__

__Extract query image's feature, and retrieve similar ones from image database__


Image src

## Part1: Feature Extraction

In this system, I implement several popular image features:
- color-based
- [RGB histogram](https://github.com/pochih/CBIR/blob/master/src/color.py)
- texture-based
- [gabor filter](https://github.com/pochih/CBIR/blob/master/src/gabor.py)
- shape-based
- [daisy](https://github.com/pochih/CBIR/blob/master/src/daisy.py)
- [edge histogram](https://github.com/pochih/CBIR/blob/master/src/edge.py)
- [HOG (histogram of gradient)](https://github.com/pochih/CBIR/blob/master/src/HOG.py)
- deep methods
- [VGG net](https://github.com/pochih/CBIR/blob/master/src/vggnet.py)
- [Residual net](https://github.com/pochih/CBIR/blob/master/src/resnet.py)

##### *all features are modulized*

### Feature Fusion
Some features are not robust enough, and turn to feature fusion
- [fusion.py](https://github.com/pochih/CBIR/blob/master/src/fusion.py)

### Dimension Reduction
The curse of dimensionality told that vectors in high dimension will sometimes lose distance property
- [Random Projection](https://github.com/pochih/CBIR/blob/master/src/random_projection.py)

## Part2: Evaluation

CBIR system retrieves images based on __feature similarity__

Robustness of system is evaluated by MMAP (mean MAP), the evaluation formulas is refer to here

- image AP : average of precision at each hit
- depth=K means the system will return top-K images
- a correct image in top-K is called a hit
- AP = (hit1.precision + hit2.precision + ... + hitH.precision) / H
- class1 MAP = (class1.img1.AP + class1.img2.AP + ... + class1.imgM.AP) / M
- MMAP = (class1.MAP + class2.MAP + ... + classN.MAP) / N

Implementation of evaluation can found at [evaluate.py](https://github.com/pochih/CBIR/blob/master/src/evaluate.py)

My database contains 25 classes, each class with 20 images, 500 images in total, depth=K will return top-K images from database

Method | color | daisy | edge | gabor | HOG | vgg19 | resnet152
--- | --- | --- | --- |--- |--- |--- |---
Mean MAP (depth=10) | 0.614 | 0.468 | 0.301 | 0.346 | 0.450 | 0.914 | 0.944

## Part3: Image Retrieval (return top 5 of each method)
Let me show some results of the system

### query1 - women dress
#### query
#### color
#### daisy
#### edge
#### gabor
#### HOG
#### VGG19
#### Resnet152

### query2 - orange
#### query
#### color
#### daisy
#### edge
#### gabor
#### HOG
#### VGG19
#### Resnet152

### query3 - NBA jersey
#### query
#### color
#### daisy
#### edge
#### gabor
#### HOG
#### VGG19
#### Resnet152

### query4 - snack
#### query
#### color
#### daisy
#### edge
#### gabor
#### HOG
#### VGG19
#### Resnet152

## Part4: Usage of Repository
If you are interesting with the results, and want to try your own images,

Please refer to [USAGE.md](https://github.com/pochih/CBIR/blob/master/USAGE.md)

The details are written inside.

## Author
Po-Chih Huang / [@pochih](http://pochih.github.io/)